氮磷营养限制影响三角褐指藻光合无机碳利用和碳酸酐酶活性
EFFECTS OF NITROGEN OR PHOSPHORUS LIMITATION ON PHOTOSYNTHETIC INORGANIC CARBON UTILIZATION AND CARBONIC ANHYDRASE ACTIVITY IN PHAEODACTYLUM TRICORNUTUM
-
摘要: 以海洋硅藻三角褐指藻为实验材料, 研究了不同氮磷比培养对其光合无机碳利用和碳酸酐酶活性的影响, 结果显示三角褐指藻生长速率在N:P=16:1时最大, 高于或低于16:1时明显下降, 表明其最适生长受到氮磷的限制。氮限制(N:P=4:1或1:1)导致叶绿素a含量分别下降30.1% 和47.6%, 磷限制(N:P=64:1或256:1)下降39.1%和52.4%, 但氮或磷限制对叶绿素c含量并没有明显影响。不同营养水平培养对光饱和光合速率具有明显的影响, 与营养充足培养相比, 在严重氮磷限制(N:P=1:1或256:1)培养下光饱和光合速率分别下降39.7%和48.0%, 光合效率与暗呼吸速率也明显下降。在氮磷限制培养下藻细胞pH补偿点明显下降; K0.5CO2值在磷限制下降低30%, 表明磷限制有助于提高细胞对CO2的亲和力, 但氮限制并没有明显影响。在氮磷限制培养的细胞反应液中Fe (CN)63-浓度下降速率较慢, 表明在氮磷限制环境中生长的细胞质膜氧化还原能力明显低于营养充足条件下生长的细胞。氮磷限制也导致胞内、外碳酸酐酶活性明显下降, 其中在氮限制下胞外碳酸酐酶活性分别下降50%和37.5%, 在磷限制下下降22.3%和42.1%。严重的氮(N:P=1:1)或磷(N:P=256:1)限制导致胞内碳酸酐酶活性下降36.5%和42.9%。研究结果表明, 三角褐指藻细胞在氮磷营养限制的环境中, 可以通过调节叶绿素含量、无机碳的利用方式和碳酸酐酶的活性以维持适度的生长。Abstract: Influences of nitrogen (N) and phosphorus (P) ratios on photosynthetic inorganic carbon utilization and carbonic anhydrase activity in marine diatom Phaeodactylum tricornutum were investigated. The results showed that the growth rate in the algae grown under the medium with N:P=16:1 was the largest. Higher or lower than N:P=16:1 resulted in a significant decrease in growth rate, which indicated that the optimum growth was limited by nitrogen or phosphorus supply. Chlorophyll a content was reduced by 30.1% and 47.6% in N-limited cells (N:P=4:1 or 1:1), by 39.1% and 52.4% in P-limited cells (N:P=64:1 or 256:1), however N or P limitation showed no significant affect on the content of chlorophyll c. Compared with nutrient-replete cultures, severe N or P-limited cultures (N:P=1:1 or 256:1) resulted in a decrease by 39.7% and 48.0% in light-saturated photosynthetic rate. Nutrient-limited conditions also caused a significant decline in photosynthetic efficiency and dark respiration rate. K0.5CO2 decreased by 30% in P-limited conditions, which indicated P limitation could increase the affinity of the algal cell for CO2. Plasma membrane redox rate was lower in nutrient limitation than that in nutrient replete. Extracellular carbonic anhydrase activity was reduced by 50% and 37.5% in N-limited condition, by 22.3% and 42.1% in P-limited conditions relative to nutrient-replete conditions. Intracellular carbonic anhydrase activity was 36.5% and 42.9% lower in severe N or P limitation than in nutrient-replete cultures. The above results showed that this alga grown under conditions of nutrient limitation (N or P) could maintain a moderate growth by adjusting chlorophyll content, the mode of inorganic carbon utilization and carbonic anhydrase activity.
-
Keywords:
- Phaeodactylum tricornutum /
- N or P limitation /
- Photosynthesis /
- Carbonic anhydrase
-
-
[1] Granum E, Raven J A, Leegood R C. How do marine diatoms fix 10 billion tones of carbon per year[J]? Canadian Journal of Botany, 2005, 83: 898-908
[2] Badger M R, Anderews T J, Whitney S M, et al. The diversity and coevolution of Rubisco, plastids, pyrenoids and chloroplast based CO2 concentrating mechanisms in algae[J]. Canadian Journal of Botany, 1998, 70: 1052-1071
[3] Reinfelder J R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton[J]. Annual Review Marine Science, 2011, 3: 291-315
[4] Cloern J E. Our evolving conceptual model of coastal eutrophication problem[J]. Marine Ecology Progress Series, 2001, 210: 223-253
[5] Conley D J. Biogeochemical nutrient cycles and nutrient management strategies[J]. Hydrobiologia, 1999, 410: 87-96
[6] Liu DY, Sun J, Chen Z T, et al. Effect of N:P ratio on the growth of a red tide diatom Skeletonema costatum[J]. Transactions of Oceanology and Limnology, 2002, 33(1): 39-44[刘东艳, 孙军, 陈宗涛, 等. 不同氮磷比对中肋骨条藻生长特性的影响. 海洋湖沼通报, 2002, 33(1): 39-44]
[7] Liu H, Gao Y L, Yin K D, et al. Effects of N to P ration on the growth of two red tide diatom Skeletonema costatum and Thalassiosira weissflogii[J]. Journal of Tropical Oceanography, 2010, 29(6): 92-97[刘皓, 高永利, 殷克东, 等.不同氮磷比对中肋骨条藻和威氏海链藻生长特性的影响. 热带海洋学报, 2010, 29(6): 92-97]
[8] Hu Z X, Xu N, Li A F, et al. Effects of different N:P ratios on the growth of three red tide algae[J]. Acta Hydrobiologica Sinica, 2008, 32(4): 482-487[胡章喜, 徐宁, 李爱芬, 等. 氮磷比率对3种典型赤潮藻生长的影响. 水生生物学报, 2008, 32(4): 482-487]
[9] Hodgkiss I J, Ho K C. Are changes in N:P ratios in coastal waters the key to increased red tide blooms[J]? Hydrobiologia, 1997, 352: 141-147
[10] Geider R J, La Roche J, Greene R M, et al. Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate and iron starvation[J]. Journal of Phycology, 1993, 29: 755-766
[11] Geider R J, Macintyre H L, Graziano L M, et al. Responses of the photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and phosphorus limitation[J]. European Journal of Phycology, 1998, 33: 315-332
[12] Brooks A. Effects of phosphorus nutrition on ribulose-1,5-bisphosphate carboxylase activation, photosynthetic quantum yield and amounts of Calvin-cycle metabolites in spinach leaves[J]. Australian Journal of Plant Physiology, 1986, 13: 221-237
[13] Anwaruzzaman, Sawada S, Usuda H, et al. Regulation of ribulose 1, 5-bisphosphate carboxylase oxygenase activation by inorganic phosphate through stimulating the binding of the activator CO2 to the activation sites[J]. Plant Cell Physiology, 1995, 36: 425-433
[14] Jeffrey S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biochemie und Physiologie Pflanzen, 1975, 167: 191-194
[15] Henley W J. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes[J]. Journal of Phycology, 1993, 29: 729-739
[16] Nimer N A, Warren M, Merret M J. The regulation of photosynthetic rate and activation of extracellular carbonic anhydrase under CO2-limiting conditions in the marine diatom Skeletonema costatum[J]. Plant Cell Environment, 1998, 21: 805-812
[17] Willbur K M, Anderson N G. Electronic and colorimetric determination of carbonic anhydrase[J]. Journal of Biological Chemistry, 1948, 176: 147-154
[18] Redfield B C. The biology control of chemical factors in the environment[J]. American Scientist, 1958, 46: 205-221
[19] Ho K C, Hodgkiss I J. Assessing the limiting factors of red tide by bottle bioassay[J]. Asian Marine Biology, 1993, 10: 77-94
[20] Davies J P, Grossman A R. Responses to deficiencies in macronutrients[A]. In: Rochaix J D, Golschmidt-Clermont M, Merchant S (Eds.), The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas[C]. Dordrecht: Kluwer Academic Publisher. 1998, 613-633
[21] Giordano M, Hell R. Mineral nutrition in photolithotrophs: cellular mechanisms controlling growth in terrestrial and aquatic habitats[J]. Recent Research Developments in Plant Physiology, 2001, 2: 95-123
[22] Shi Y J, Hu H H, Ma R Y, et al. Photosynthetic characteristics of Prorocentrum minimum and its nutrient uptake at different nitrogen and phosphorus levels[J]. The Chinese Journal of Process Engineering, 2004, 4(6): 554-559[石岩峻, 胡晗华, 马润宇, 等. 不同氮磷水平下微小原甲藻对营养盐的吸收和光合作用特性. 过程工程学报, 2004, 4(6): 554-559]
[23] Plumley F G, Schmidt G W. Nitrogen-dependent regulation of photosynthetic gene expression[J]. Process of National Academic Science USA, 1989, 86: 2678-2682
[24] Ekman P, Lignell A, Pedersen M. Localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in Gracilaria secundata (Rhodophyta) and its role as a nitrogen storage pool[J]. Botanica Marina, 1989, 32: 527-534
[25] Sharkey T D. Feedback limitation of photosynthesis and the physiological role of ribulose bisphosphate carboxylase carbamylation[J]. Botanical Magazine, 1990, 2: 87-105
[26] Maberly S C, Spence D H N. Photosynthetic inorganic carbon use by freshwater plants[J]. Journal of Ecology, 1983, 71: 705-724
[27] Beardall J, Roberts S, Millhouse J. Effects of nitrogen limitation on inorganic carbon uptake and specific activity of ribulose-1,5-P2 carboxylse in green microalgae[J]. Canadian Journal of Botany, 1991, 69: 1146-1150
[28] Huppe H C, Turpin D H. Integration of carbon and nitrogen metabolism in plant and algal cells[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1994, 45: 577-607
[29] Young E B, Beardall J. Modulation of photosynthesis and inorganic carbon acquisition in a marine microalga by nitrogen, iron and light availability[J]. Canadian Journal of Botany, 2005, 83(7): 917-928
[30] Hu H H, Zhou Q B. Regulation of inorganic carbon acquisition by nitrogen and phosphorus levels in the Nannochloropsis sp.[J]. World Journal of Microbiology Biotechnology, 2010, 26: 957-961
[31] Beardall J, Roberts S, Raven J A. Regulation of inorganic carbon acquisition by phosphorus limitation in the green alga Chlorella emersonii[J]. Canadian Journal of Botany, 2005, 83: 859-864
[32] Kozlowska-Szerenos B, Zieliński P, Maleszewski S. Involvement of glycolate metabolism in acclimation of Chlorella vulgaris cultures to low phosphate supply[J]. Plant Physiology and Biochemistry, 2000, 38: 727-734
[33] Raven J A, Cockell C S, La Rocha C L. The evolution of inorganic carbon concentrating mechanisms in photosynthesis[J]. Philosophical Transactions of Royal Society B, 2008, 363: 2641-2650
[34] Xia J R, Huang J. Impacts of nitrogen and phosphorus on inorganic carbon utilization and carbonic anhydrase activity in Nitzschia closterium f. minutissima[J]. Acta Ecologica Sinica, 2010, 30(15): 4085-4092[夏建荣, 黄瑾. 氮、磷对小新月菱形藻无机碳利用与碳酸酐酶活性的影响. 生态学报, 2010, 30(15): 4085-4092]
[35] Kozlowska-Szerenos B, Bialuk I, Maleszewski S. Enhancement of photosynthetic O2 evolution in Chlorella vulgaris under high light and increased CO2 concentration as a sign of acclimation to phosphate deficiency[J]. Plant Physiology and Biochemistry, 2004, 42: 403-409
[36] Beardall J, Griffiths H, Raven J A. Carbon isotope discrimination and the CO2 accumulating mechanism in Chloroella emersoni[J]. Journal of Experimental Botany, 1982, 33: 729-737
[37] Majeau N, Coleman J R. Correlation of carbonic anhydrase and ribulose-1, 5-bisphosphate carboxylase/oxygenase expression in pea[J]. Plant Physiology, 1994, 104: 1393-1399
[38] Nimer N A, Miao X L, Brownlee C, et al. Inorganic carbon limitation, exofacial carbonic anhydrase activity, and plasma membrane redox activity in marine phytoplankton species[J]. Journal of Phycology, 1999, 35: 1200-1205
-
期刊类型引用(16)
1. 贾滢暄,张树林,张达娟,戴伟,毕相东. 磷恢复对磷饥饿铜绿微囊藻光合色素和部分抗氧化酶活性的影响. 中国农业科技导报. 2024(01): 70-77 . 百度学术
2. 凌晨,付发武,张翠霞,雷灵逸,金书言,刘小芳,张守庆,鲁翠翠. 不同氮磷营养条件对中肋骨条藻和球等鞭金藻生长及元素组成的影响. 中国海洋大学学报(自然科学版). 2024(08): 63-73 . 百度学术
3. 张萍,陆家昌,李朗,石天应,赖俊翔,庄军莲,李杰. 硅壳和细胞内含物对硅藻沉降速率的影响. 海洋环境科学. 2023(06): 927-934 . 百度学术
4. 卫燕云,金鹏,江莹莹,夏建荣. 海洋酸化与磷浓度变化对龙须菜光合作用和ATPase活性的影响. 生态科学. 2021(01): 1-8 . 百度学术
5. 陈宁,何佳昕,孙晓莉,刘妍,范亚文. 硝态氮与无机磷浓度及其比例对簇生舟形藻生长生理及细胞形态的影响. 西北植物学报. 2021(04): 615-626 . 百度学术
6. 朱文娜,龚一富,郭芮栋,杨雨,蔡嘉硕,王何瑜,汪如. 磷限制对三角褐指藻脂质含量及相关基因表达的影响. 中国粮油学报. 2021(07): 93-99 . 百度学术
7. 陈若莹,徐润洁,龚一富,刘芳,付旭,章丽,王何瑜,石慧. 氮元素对三角褐指藻岩藻黄素和油脂合成关键酶基因表达与代谢合成的影响. 核农学报. 2019(09): 1734-1741 . 百度学术
8. 司冉冉,关万春,蔡景波,陈少波. 氮源对塔玛亚历山大藻生长和毒性的影响. 生态学杂志. 2017(10): 2880-2885 . 百度学术
9. 石琦,梅洪,张成军,黄建,吴红艳. 缺磷和高光对集球藻光合生理和油脂积累的影响. 植物科学学报. 2017(02): 291-298 . 百度学术
10. 杨坤,卢文轩,李静. 小球藻磷吸收的初步研究. 安全与环境学报. 2016(05): 216-220 . 百度学术
11. 刘俊鹏,屈亮,刘信勇,高宏昭,王彤彤. 不同营养条件对地表水藻类生长的影响. 环境工程. 2016(S1): 407-410 . 百度学术
12. 徐兴莲,宋熙坤,岳瑞,张思思,王雅琴,吴红艳. 氮限制对硅藻三角褐指藻光系统Ⅱ光化学反应的影响. 生态学杂志. 2016(01): 183-188 . 百度学术
13. 李磊,关万春,陈少波,谢起浪. 水体N/P对塔玛亚历山大藻响应紫外辐射的影响. 生态学杂志. 2016(02): 395-400 . 百度学术
14. 张聪慧,朱淮民. 日本血吸虫潜在药物靶点β-碳酸酐酶的表达与鉴定. 中国血吸虫病防治杂志. 2016(02): 161-166 . 百度学术
15. 王越,沈盎绿,赵世烨,朱礼鑫,宋淑贞,李道季. pH对米氏凯伦藻(Karenia mikimotoi)种群生长、营养吸收及无机碳亲和力的影响. 海洋环境科学. 2015(04): 488-493 . 百度学术
16. 曾晓鹏,夏建荣. 光强对两种硅藻光合作用、碳酸酐酶和RubisCO活性的影响. 水生生物学报. 2015(02): 368-374 . 本站查看
其他类型引用(11)
计量
- 文章访问数: 1251
- HTML全文浏览量: 2
- PDF下载量: 804
- 被引次数: 27