光强对两种硅藻光合作用、碳酸酐酶和RubisCO活性的影响

曾晓鹏, 夏建荣

曾晓鹏, 夏建荣. 光强对两种硅藻光合作用、碳酸酐酶和RubisCO活性的影响[J]. 水生生物学报, 2015, 39(2): 368-374. DOI: 10.7541/2015.48
引用本文: 曾晓鹏, 夏建荣. 光强对两种硅藻光合作用、碳酸酐酶和RubisCO活性的影响[J]. 水生生物学报, 2015, 39(2): 368-374. DOI: 10.7541/2015.48
Zeng Xiao-peng, Xia Jian-Rong. EFFECTS OF LIGHT INTENSITIES ON PHOTOSYNTHESIS, CARBONIC ANHYDRASE AND RUBISCO ACTIVITY IN TWO DIATOMS[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(2): 368-374. DOI: 10.7541/2015.48
Citation: Zeng Xiao-peng, Xia Jian-Rong. EFFECTS OF LIGHT INTENSITIES ON PHOTOSYNTHESIS, CARBONIC ANHYDRASE AND RUBISCO ACTIVITY IN TWO DIATOMS[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(2): 368-374. DOI: 10.7541/2015.48

光强对两种硅藻光合作用、碳酸酐酶和RubisCO活性的影响

基金项目: 

国家自然科学基金(No:41376156)

广东省自然科学基金(S2012010009853)

广东省高层次人才项目

广东省高等院校科技创新项目(2012KJCX0086)资助

EFFECTS OF LIGHT INTENSITIES ON PHOTOSYNTHESIS, CARBONIC ANHYDRASE AND RUBISCO ACTIVITY IN TWO DIATOMS

  • 摘要: 为研究海洋浮游硅藻光合固碳能力与光强的关系, 以三角褐指藻和威氏海链藻为实验材料, 测定了不同光强培养下三角褐指藻和威氏海链藻生长、光合特性、碳酸酐酶和核酮糖-1, 5-二磷酸羧化/氧化酶活性(RubisCO)的变化, 结果显示高光强促进两种硅藻的生长, 但对威氏海链藻的影响更明显。高光强导致两种硅藻叶绿素a、c含量、光系统Ⅱ的最大光化学效率和实际光化学效率明显下降, 非光化学淬灭系数明显升高, 但对光化学淬灭系数并没有明显影响。在高光下威氏海链藻和三角褐指藻胞内外碳酸酐酶活性明显升高。在高光强下培养的威氏海链藻RubisCO活性明显高于低光下培养, 但三角褐指藻正好相反, 不管高光还是低光培养威氏海链藻RubisCO活性始终高于三角褐指藻。以上结果表明不同硅藻对光强变化的响应存在差异, 它们可以通过调节光合生理特征、光合固碳关键酶和CO2供应以适应光强的变化。
    Abstract: Marine planktonic diatoms play an important role in marine primary productivity and the carbon fixation is closely related to light intensity. In the present study, we investigated the growth rate, photosynthetic characteristics, carbonic anhydrase activity, and ribulose 1, 5-bisphosphate carboxylase/oxidase (RubisCO) activity of Phaeodactylum tricornutum and Thalassiosira weissflogii under different light intensities (high or low light). The results showed that high light intensity promote the growth of the two diatoms, which was more obvious in T. weissflogii. High light intensity attenuated the levels of chlorophyll a, c content, Fv/Fm and Yield but increased qN. High light intensity has no effect on qP. High light also enhanced the intracellular and extracellular carbonic anhydrase activities in both diatoms. Interestingly, in P. tricornutum, low light increased ribulose-1,5-bisphosphate carboxylase/oxygenase activity compared to high light; however, the opposite result was observed in T. weissflogii. Rubisco activity in T. weissflogii is higher than that in P. tricornutum in.both low and high light. These results suggest that the two diatoms are differently responded to the light intensity and that they can accordingly adjust their photosynthetic characteristics, carbonic anhydrase and RubisCO activity to accommodate the varied light intensity.
  • [1]

    Granum E, Raven J A, Leegood R C. How do marine diatoms fix 10 billion tonnes of inorganic carbon per year [J]? Canadian Journal Botany, 2005, 83: 898908

    [2]

    Badger M R, Andrews T J, Whitney S M, et al. The diversity and co-evolution of Rubisco, plastids, pyrenoids and chloroplast-based CCMs in the algae [J]. Canadian Journal of Botany, 1998, 76: 10521071

    [3]

    Whitney S P, Baldet P, Hudson G S, et al. Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts [J]. Plant Journal, 2001, 26: 535547

    [4]

    Riebesell U, Wolfgladrow D A, Smetacek V. Carbon dioxide limitation of marine-phytoplankton growth rates [J]. Nature, 1993, 361: 249251

    [5]

    Reinfelder J R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton [J]. Annual Review Marine Science, 2011, 3: 291315

    [6]

    Giordano M, Beardall J, Raven J A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution [J]. Annual Review of Plant Biology, 2005, 56: 99131

    [7]

    Harada H, Nakatsuma D, Ishida M, et al. Regulation of the expression of intracellular -carbonic anhydrase in response to CO2 and light in the marine diatom phaeodactylum tricornutum [J]. Plant Physiology, 2005, 139: 10411050

    [8]

    Reinfelder J R, kraepiel A M L, Morel F M M. Unicellular C4 photosynthesis in a marine diatom [J]. Nature, 2000, 407: 996999

    [9]

    Maya H D, Nitsan G, Daniela E, et al. The role C4 metabolism in the marine diatom Phaeodactylum tricornutum [J]. New Phytologist, 2013, 197: 177185

    [10]

    Guillard R R L. Culture Methods and Growth Measurements [M]. STEIN J R. Handbook of Phycological Methods. London: Cambridge University Press. 1973, 289312

    [11]

    Jeffrey S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton [J]. Biochemie und Physiologie Pflanzen, 1975, 167: 191194

    [12]

    Yu J L, Xia J R, Zou Y D. Response of carbonic anhydrase activity and photosynthesis to high salinity stress in Nitzschia closterium f. minutissima [J]. Journal of Fisheries of China, 2011, 35(4): 515523 [余锦兰, 夏建荣, 邹永东. 小新月菱形藻碳酸酐酶活性和光合作用对高盐度胁迫的响应. 水产学报, 2011, 35(4): 515523]

    [13]

    Willbur K M, Anderson N G. Electronic and colorimetric determination of carbonic anhydrase [J]. Journal of Biological Chemistry, 1948, 176: 147154

    [14]

    Li X M, Xia J R. Effects of nitrogen or phosphorus limitation on photosynthetic inorganic carbon utilization and carbonic anhydrase activity in phaeodactylum tricornutum [J]. Acta Hydrobiologica Sinica, 2013, 37(3): 405412 [李小梅, 夏建荣. 氮磷营养限制影响三角褐指藻光合无机碳利用和碳酸酐酶活性. 水生生物学报, 2013, 37(3): 405412]

    [15]

    Li H S, Sun Q, Zhao S J, et al. Principles and Techniques of Plant Physiology Biochemical Experiment [M]. Higher Education Press. 2000, 138141 [李合生, 孙群, 赵世杰, 等. 植物生理生化实验原理和技术. 高等教育出版社. 2000, 138141]

    [16]

    Henley W J. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes [J]. Journal of Phycology, 1993, 29: 729739

    [17]

    Du X F, Zou N, Sun D H, et al. Effect of light intensity on growth rate and accumulation of organics of Nannochloropsis oculata Droop [J]. Bioprocess, 2011, 1: 1821 [杜晓凤, 邹宁, 孙东红, 等. 光照强度对微绿球藻生长及有机质积累的影响. 生物过程, 2011, 1: 1821]

    [18]

    Yu P, Zhang Q Q, Wang X L, et al. Effects of temperature and irradiance on growth of two strains of marine diatoms [J]. Marine Environmental Science, 2006, 25(1): 3840 [于萍, 张前前, 王修林, 等. 温度和光照对两株赤潮硅藻生长的影响. 海洋环境科学, 2006, 25(1): 3840]

    [19]

    Zou D H, Gao K S. Photosynthetic acclimation to different light levels in the brown marine macroalga, Hizikia fusiformis (Sargassaceae, Phaeophyta) [J]. Journal of Applied Phycology, 2010, 22: 395404

    [20]

    Kate M, Joanne L M, Rachel M L, et al. Chloroplast acclimation in leaves of Guzmania monostachia in response to high light [J]. Plant Physiology, 1999, 121: 8995

    [21]

    Song L R, Lei L M, He Z R, et al. Growth and toxin analysis in two toxic cyanobacteria Microcystis aeruginosa and Microcystis viridis isolated from Dianchi Lake [J]. Acta Hydrobiologica Sinica, 1999, 23(5): 402408 [宋立荣, 雷腊梅, 何振荣, 等. 滇池水华蓝藻铜绣微囊藻和绿色微囊藻的生长生理特性和毒素分析.水生生物学报, 1999, 23(5): 402408]

    [22]

    Han B P, Han Z G, Fu X. Algal Photosynthesis: Mechanisms and Models [M]. Beijing: Science Press. 2003, 72 [韩博平, 韩志国, 付翔. 藻类光合作用机理与模型. 北京: 科学出版社. 2003, 72]

    [23]

    Dionisio M L, Fukuzawa H, Miyachi S. Light-induced carbonic anhydrase expression in Chlamydomonas reinhardtii [J]. Plant Physiology, 1990, 94: 11031110

    [24]

    Falkowski P G, Katz M E, Knoll A H, et al. The evolution of modern eukaryotic phytoplankton [J]. Science, 2004, 305: 354360

    [25]

    Wang S S, Liu Y D, Zou Y D, et al. Modulation and adaptation of carbonic anhydrase activity in Microcystis spp under different environmental factors [J]. Acta Ecologica Sinica, 2006, 26(8): 24432448 [王山杉, 刘永定, 邹永东, 等. 微囊藻碳酸酐酶活性在不同环境因素下的调节与适应. 生态学报, 2006, 26(8): 24432448]

    [26]

    Willian J C, Willian L O. A novel role for light in the activation of ribulose bisphosphate carboxylase/oxygenase [J]. Plant Physiology, 1990, 92: 110115

    [27]

    Streusand V J, Portis A R Jr. Rubisco activase mediates ATP-dependent activation of ribulose bisphosphate carboxylase [J]. Plant Physiology, 1987, 85: 152154

    [28]

    Machler F, Nosberger J. Regulation of ribulose bisphosphate carboxylase activity in intact wheat leaves by light, CO2, and temperature [J]. Journal of Experimental Botany, 1980, 31: 14851491

    [29]

    Rowan F S, Jeffrey R S. Rugulation of ribulose-1, 5-bisphosphate carboxylase/oxygenase activity in response to reduced light intensity in C4 plants [J]. Plant Physiology, 1993, 102: 2128

计量
  • 文章访问数:  1749
  • HTML全文浏览量:  14
  • PDF下载量:  1082
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-25
  • 修回日期:  2014-06-10
  • 发布日期:  2015-03-24

目录

    /

    返回文章
    返回