细胞质膜在罗非鱼和叉尾斗鱼低温驯化过程中的功能
THE FUNCTIONAL SIGNIFICANCE OF THE PLASMA MEMBRANE IN COLD ACCLIMATION OF TWO FISH SPECIES:THE TILAPIA(OREOCHROMIS NILOTICUS) AND THE PARADISE FISH(MACROPODUS OPERCULARIS)
-
摘要: 研究通过一系列科学的指标,比如死亡温度、累计温度处理时间和存活率曲线,检测并比较了吉富罗非鱼和叉尾斗鱼的低温耐受能力,然后系统地检测了在两种鱼中,低温对一系列与细胞膜相关的生理指标的影响,包括细胞膜流动性、内吞作用和膜蛋白Na+, K+ -ATPase的活性。实验结果显示叉尾斗鱼比吉富罗非鱼有着明显优良的耐寒力。两种鱼内与细胞膜相关的生理指标都对温度敏感,但是具体的敏感程度却在耐寒种(叉尾斗鱼)和不耐寒种(吉富罗非鱼)之间存在显著差异。在具体每个物种内部,与细胞膜相关的一系列生理功能对温度的敏感程度是一致的。所有这些种间差异性和种内一致性都使得细胞膜流动性在物种耐寒过程中的重要性凸显出来。结果揭示细胞质膜,尤其是质膜流动性可能在这两种鱼对低温适应过程中扮演重要的角色。Abstract: In this study, we initially compared the cold tolerance of the Genetically Improved Farmed Tilapia(GIFT) strain of Nile tilapia(Oreochromis niloticus) and the paradise fish(Macropodus opercularis) with a series of scientific indices, such as the temperature at death(TAD), the cumulative degree hours(CDH) and the survival curves. Next, we systematically studied the effects of low temperatures on a series of plasma membrane-related physiological functions, such as membrane fluidity, endocytosis and the activity of the membrane protein Na+, K+ -ATPase in both species. The results showed that the paradise fish had a better cold tolerance than did the GIFT. The plasma membrane-related physiological functions were all sensitive in low temperatures of both fishes. However, these sensitivities were different between the hardy species(paradise fish) and the non-hardy species(GIFT). The patterns and tendencies concerning sensitivity changes during varied temperatures were consistent in each species. All these interspecific differences and intraspecific consistence highlighted the importance of the membrane fluidity during the cold acclimation. These results suggest that the plasma membrane, particularly membrane fluidity, may play an important role in cold acclimation of the two fish species.
-
Keywords:
- Tilapia /
- Paradise fish /
- Low temperatures /
- Plasma membrane /
- Membrane fluidity /
- Endocytosis /
- Na+,K+-ATPase
-
-
[1] Li C H, Li S F. Study on low lethal temperature of different strains of Nile tilapia(Oreochromis niloticus)[J]. Fisheries Science Technology Information, 1996, 23(5):195-198[李晨虹,李思发.不同品系尼罗罗非鱼致死低温的研究.水产科技情报, 1996, 23(5):195-198]
[2] Tave D, Jayaprakas V, Smitherman R O. Effects of intraspecific hybridization in Tilapia nilotica on survival under ambient winter temperature in Alabama[Z]. Blackwell Publishing Ltd, 1990, 21(3):201-209
[3] Yuan X, Li L P, Tu Z Y, et al. The effect of temperature on fatigue induced changes in the physiology and swimming ability of juvenile Aristichthys nobilis(bighead carp)[J]. Acta Hydrobiologica Sinica, 2014, 38(3):505-509[袁喜,李丽萍,涂志英,等.温度对鳙幼鱼疲劳引起的生理变化和游泳能力的影响研究.水生生物学报, 2014, 38(3):505-509]
[4] Yan Y L, Xie X J. Mitochondrial metabolic compensation of the southern catfish, Silurus meridionalis Chen, in response to acclimation of temperature and photoperiod[J]. Acta Hydrobiologica Sinica, 2014, 38(3):422-429[闫玉莲,谢小军.温度及光照驯化对南方鲇线粒体代谢补偿调节的影响.水生生物学报, 2014, 38(3):422-429]
[5] Guo Q D, Wang Y J, L W Q. Combined effects of temperature and salinity on the physiological osmtic induction and antioxidant response in the juvenile Japanese flounder(Paralichthys olivaceus)[J]. Acta Hydrobiologica Sinica, 2014, 38(1):58-67[郭勤单,王有基,吕为群.温度和盐度对褐牙鲆幼鱼渗透生理及抗氧化水平的影响.水生生物学报, 2014, 38(1):58-67]
[6] Feng G P, Zhuang P, Zhang L Z, et al. Effects of water temperature on metabolic enzymeand antioxidase activities in juvenile chinese sturgeon(Acipenser sinensis)[J]. Acta Hydrobiologica Sinica, 2012, 36(1):137-142[冯广朋,庄平,章龙珍,等.温度对中华鲟幼鱼代谢酶和抗氧化酶活性的影响.水生生物学报, 2012, 36(1):137-142]
[7] He W, Chen B J, Cao Z D, et al. The effect of acclimation temperature on the activity of carbohydrate-metabolizing enzymes in five cyprinids[J]. Acta Hydrobiologica Sinica, 2015, 39(1):203-208[何伟,陈波见,曹振东,等.温度驯化对五种鲤科鱼类糖代谢酶活性的影响.水生生物学报, 2015, 39(1):203-208]
[8] Liu B, Wang M Y, Xie J, et al. Effects of acute cold stress onserum biochemical and immune parameters and liver HSP70 gene expression in GIFT strain of Nile tilapia(Oreochromis niloticus)[J]. Acta Ecologica Sinica, 2011, 31(17):4866-4873[刘波,王美垚,谢骏,等.低温应激对吉富罗非鱼血清生化指标及肝脏HSP70基因表达的影响.生态学报, 2011, 31(17):4866-4873]
[9] Vergauwen L, Benoot D, Blust R, et al. Long-term warm or cold acclimation elicits a specific transcriptional response and affects energy metabolism in zebrafish[J]. Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology, 2010, 157(2):149-157
[10] Logan C A, Somero G N. Transcriptional responses to thermal acclimation in the eurythermal fish Gillichthys mirabilis(Cooper 1864)[J]. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 2010, 299(3):R843-R852
[11] Li L C, Li Q, Long Y, et al. Microarray analysis of temperature stress effects on transcriptional expression in zebrafish larvae[J]. Acta Hydrobiologica Sinica, 2012, 36(5):882-891[李林春,李青,龙勇,等.温度刺激对斑马鱼仔鱼基因转录表达的影响.水生生物学报, 2012, 36(5):882-891]
[12] Angilletta M J, Niewiarowski P H, Navas C A. The evolution of thermal physiology in ectotherms[J]. Journal of Thermal Biology, 2002, 27(4):249-268
[13] Allanson B R, Bok A, Van Wyk N I. The influence of exposure to low temperature on Tilapia mossambica Peters(Cichlidae)[J]. Journal of Fish Biology, 1971, 3(2):181-185
[14] Sardella B A, Brauner C J. Cold temperature-induced osmoregulatory failure:The physiological basis for tilapia winter mortality in the Salton Sea[J]? California Fish and Game, 2007, 93(4):200-213
[15] Schnell A K, Seebacher F. Can phenotypic plasticity facilitate the geographic expansion of the tilapia Oreochro-mis mossambicus[J]? Physiological and Biochemical Zoology, 2008, 81(6):733-742
[16] Tranulis M A, Christophersen B, Blom A K, et al. Glucose dehydrogenase, glucose-6-phosphate dehydrogenase and hexokinase in liver of rainbow trout(Salmo gairdneri). Effects of starvation and temperature variations[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 1991, 99(3):687-691
[17] Shivkamat P, Roy R. Regulation of membrane lipid bilayer structure during salinity adaptation:A study with the gill epithelial cell membranes of Oreochromis niloticus[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2005, 142(1):28-36
[18] Zerai D B, Fitzsimmons K M, Collier R J. Transcriptional response of delta-9-desaturase gene to acute and chronic cold stress in Nile tilapia, Oreochromis niloticus[J]. Journal of the World Aquaculture Society, 2010, 41(5):800-806
[19] Vagner M, Santigosa E. Characterization and modulation of gene expression and enzymatic activity of delta-6 desaturase in teleosts:A review[J]. Aquaculture, 2011, 315(1-2):131-143
[20] Chen Z Z, Chen C-H C, Zhang J F, et al. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish[J]. Proceedings of the National Academy of Sciences, 2008, 105(35):12944-12949
[21] Dey I, Farkas T. Temperature shifts induce adaptive changes in the physical state of carp(Cyprinus carpiot L.) erythrocyte plasma membranes in vitro[J]. Fish Physiology and Biochemistry, 1992, 10(4):347-355
[22] Sardella B A, Cooper J, Gonzalez R J, et al. The effect of temperature on juvenile Mozambique tilapia hybrids(Oreochromis mossambicus x O. urolepis hornorum) exposed to full-strength and hypersaline seawater[J]. Comparative Biochemistry and Physiology Part A:Molecular and Integrative Physiology, 2004, 137(4):621-629
[23] Buda C, Dey I, Balogh N, et al. Structural order of membranes and composition of phospholipids in fish brain cells during thermal acclimatization[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(17):8234-8238
[24] Padron D, Bizeau M E, Hazel J R. Is fluid-phase endocytosis conserved in hepatocytes of species acclimated and adapted to different temperatures[J]? American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2000, 278(2):R529-R536
[25] Darling R A. A directed research project investigating aggressive behavior in paradise fish[J]. Bioscene, 2003, 29(2):3-7
[26] Ward R W. Ethology of the paradise fish, Macropodus opercularis I. differences between domestic and wild fish[J]. Copeia, 1967, 1967(4):809-813
[27] Gervai J, Csnyi V. Artifical gynogenesis and mapping of gene-centromere distances in the paradise fish, Macropodus opercularis[J]. Theoretical and Applied Genetics, 1984, 68(6):481-485
[28] Behrends L L, Kingsley J B, Bulls M J. Cold tolerance in maternal mouthbrooding tilapias:heritability estimates and correlated growth responses at suboptimal temperatures. In:Pullin R S V, Lazard J, Legendre M, et al.(Eds.), The Third International Symposium on Tilapia in Aquaculture[C]. ICLARM Conference Proceedings. 1996
[29] Cnaani A, Gall G A E, Hulata G. Cold tolerance of tilapia species and hybrids[J]. Aquaculture International, 2000, 8(4):289-298
[30] Charo-Karisa H, Rezk M A, Bovenhuis H, et al. Effects of rearing conditions on low-temperature tolerance of nile tilapia, Oreochromis niloticus, juveniles. In:Bolivar R, Mair G, Fitzsimmons K(Eds.), New Dimensions in Farmed Tilapia. Proceedings of the 6th International Symposium on Tilapia in Aquaculture, Manila[C]. 2004
[31] Part P, Norrgren L, Bergstrom E, et al. Primary cultures of epithelial cells from rainbow trout gills[J]. Journal of Experimental Biology, 1993, 175(1):219-232
[32] Illinger D, Duportail G, Mely Y, et al. A comparison of the fluorescence properties of TMA-DPH as a probe for plasma membrane and for endocytic membrane[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes, 1995, 1239(1):58-66
[33] Ladha S, Mackie A, Clark D. Cheek cell membrane fluidity measured by fluorescence recovery after photobleaching and steady-state fluorescence anisotropy[J]. Journal of Membrane Biology, 1994, 142(2):223-228
[34] Kuhry J, Fonteneau P, Duportail G, et al. TMA-DPH:A suitable fluorescence polarization probe for specific plasma membrane fluidity studies in intact living cells[J]. Cell Biochemistry and Biophysics, 1983, 5(2):129-140
[35] Kubina M, Lanza F, Cazenave J, et al. Parallel investigation of exocytosis kinetics and membrane fluidity changes in human platelets with the fluorescent probe, trimethylam-monio-diphenylhexatriene[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes, 1987, 901(1):138-146
[36] Illinger D, Kubina M, Duportail G, et al. TMA-DPH a fluorescent probe of membrane dynamics in living cells. How to use it in phagocytosis[J]. Cell Biophysics, 1989, 14(1):17-26
[37] Flik G, Bonga S E W, Fenwick J C. Ca2+-dependent phosphatase and ATPase activities in eel gill plasma membranesI. Identification of Ca2+-activated ATPase activities with non-specific phosphatase activities[J]. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry, 1983, 76(4):745-754
[38] Yuli I, Wilbrandt W, Shinitzky M. Glucose transport through cell membranes of modified lipid fluidity[J]. Biochemistry, 1981, 20(15):4250-4256
[39] Metz J R, van den Burg E H, Bonga S E, et al. Regulation of branchial Na+/K+-ATPase in common carp Cyprinus carpio L. acclimated to different temperatures[J]. Journal of Experimental Biology, 2003, 206(13):2273-2280
[40] Palmerini C A, Mazzoni M, Giovinazzo G, et al. Blood lipids in Antarctic and in temperate-water fish species[J]. Journal of Membrane Biology, 2009, 230(3):125-131
[41] Grodzinski Z. Thermal tolerance of the larvae of three selected teleost fishes[J]. Acta Biologica Cracoviensia Serie Zoologique, 1971, 14:289-298
[42] Block E R, Edwards D. Effect of plasma membrane fluidity on serotonin transport by endothelial cells[J]. American Journal of Physiology-Cell Physiology, 1987, 253(5):C672-C678
[43] Connor W E. Importance of n-3 fatty acids in health and disease[J]. The American Journal of Clinical Nutrition, 2000, 71(1):171S-175S
[44] Cossins A R, Bowler K, Prosser C L. Homeoviscous adaptation and its effect upon membrane-bound proteins[J]. Journal of Thermal Biology, 1981, 6(4):183-187
[45] Mamdouh Z, Giocondi M C, Laprade R, et al. Temperature dependence of endocytosis in renal epithelial cells in culture[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes, 1996, 1282(2):171-173
[46] Rsj C, Berg T, Manum K, et al. Effects of temperature and dietary n-3 and n-6 fatty acids on endocytic processes in isolated rainbow trout(Oncorhynchus mykiss, Walbaum) hepatocytes[J]. Fish Physiology and Biochemistry, 1994, 13(2):119-132
[47] Stubbs C D, Smith A D. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function[J]. Biochimica et Biophysica Acta(BBA)-Reviews on Biomembranes, 1984, 779(1):89-137
[48] Chintalapati S, Kiran M D, Shivaji S. Role of membrane lipid fatty acids in cold adaptation[J]. Cellular and Molecular Biology, 2004, 50(5):631-642
[49] Dunn W A, Hubbard A L, Aronson N J. Low temperature selectively inhibits fusion between pinocytic vesicles and lysosomes during heterophagy of 125I-asialofetuin by the perfused rat liver[J]. Journal of Biological Chemistry, 1980, 255(12):5971-5978
[50] Razzaque M S. Klotho and Na+, K+-ATPase activity:solving the calcium metabolism dilemma[J]? Nephrology Dialysis Transplantation, 2008, 23(2):459-461
[51] Brauer P R, Sanmann J N, Petzel D H. Effects of warm acclimation on Na+,K+-ATPase alpha-subunit expression in chloride cells of Antarctic fish[J]. The Anatomical Record Part A:Discoveries in Molecular, Cellular, and Evolution-ary Biology, 2005, 285(1):600-609
[52] Kimelberg H K. Alterations in phospholipid-dependent(Na++K+)-ATPase activity due to lipid fluidity:Effects of cholesterol and Mg2+[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes, 1975, 413(1):143-156
[53] Djemli-Shipkolye A, Raccah D, Pieroni G, et al. Differential effect of 3 PUFA supplementations on Na,K-ATPase and Mg-ATPase activities:possible role of the membrane 6/3 ratio[J]. Journal of Membrane Biology, 2003, 191(1):37-47
[54] Rodrigo R, Bchler J, Araya J, et al. Relationship between(Na+K)-ATPase activity, lipid peroxidation and fatty acid profile in erythrocytes of hypertensive and normotensive subjects[J]. Molecular and Cellular Biochemistry, 2007, 303(1):73-81
计量
- 文章访问数: 1318
- HTML全文浏览量: 6
- PDF下载量: 374