春季不同程度低水位对四种沉水植物生理的影响
THE PHYSIOLOGICAL EFFECTS OF SPRING LOW WATER LEVEL ON FOUR SUBMERGED MACROPHYTES
-
摘要: 为了解不同沉水植物对春季低水位的生理响应, 在2014年春季开展为期3个月的控制实验, 研究不同程度的春季低水位, 包括极低水位(水深18 cm)、较低水位(36 cm)和低水位(54 cm)对3种乡土沉水植物微齿眼子菜、穗花狐尾藻和菹草的最大光化学量子产量(Fv/Fm)、总叶绿素含量和可溶性糖含量的影响, 并与外来种伊乐藻作对比。结果显示, 随着水位的降低, 微齿眼子菜、菹草和伊乐藻Fv/Fm显著升高, 而穗花狐尾藻的Fv/Fm无显著变化; 在3种水位下伊乐藻的Fv/Fm都明显高于其他3种植物。微齿眼子菜和菹草总叶绿素含量也随着水位降低有升高趋势, 而穗花狐尾藻和伊乐藻的总叶绿素含量随水位没有显著变化。所有水位下微齿眼子菜总叶绿素含量最高, 穗花狐尾藻最低, 菹草只在低水位下显著低于伊乐藻。微齿眼子菜、菹草和伊乐藻的可溶性糖含量随着水位的降低而下降, 穗花狐尾藻的可溶性糖含量随着水位的降低有升高趋势。在低水位和较低水位下穗花狐尾藻和菹草的可溶性糖含量分别是所有植物中的最小和最大, 但在极低水位下4种沉水植物的可溶性糖含量无明显差异。以上结果表明, 春季极低水位对微齿眼子菜、伊乐藻和菹草不产生胁迫,但对穗花狐尾藻产生了胁迫; 伊乐藻潜在光合能力强于乡土种, 在春季浅水区具备较强的入侵性。Abstract: To study effects of spring low water level on physiology (such as Fv/Fm, total chlorophyll content and soluble sugar) of different submerged macrophytes, three shallow water levels (18 cm, 36 cm and 54 cm) were treated with three native submerged plants Potamogeton maackianus, Myriophyllum spicatum and P. crispus, and an alien species Elodea nuttallii. The results showed that decreasing water levels increased the Fv/Fm of P. maackianus, P. crispus and E. nuttallii but not on M. spicatum. Fv/Fm of E. nuttallii was significantly higher than that of other three native species at all water levels. The total chlorophyll content of P. maackianus and P. crispus increased with decreasing water levels, while that of M. spicatum and E. nuttallii showed no significant change. The value of chlorophyll content of P. maackianus and M. spicatum was the highest and lowest at all water levels, respectively. The content of total chlorophyll of P. crispus was significant lower than that of E. nuttallii at 54 cm water depth, but other species had no significant difference. The soluble sugar of P. maackianus, P. crispus and E. nuttallii decreased with decreasing water level, while that of M. spicatum increased. The soluble sugar of M. spicatum was the highest and P. crispus was the lowest at both 54 cm and 36 cm depth. However, no significant differences of soluble sugar among four species were found at 18 cm water depth. The results suggest that extremely low water level had stressful impacts on M. spicatum but not on P. maackianus, P. crispus and E. nuttallii, and that the higher potential photosynthesis of E. nuttallii compared with native species would aid its invasive risk in shallow water in spring.
-
Keywords:
- Shallow water level /
- Submerged macrophytes /
- Stress /
- Physiology
-
-
[1] Committee to Review the IPCC (Inter Academy Council). Climate Change Assessments: Review of the Processes and Procedures of the IPCC. The Report of the Inter Academy Council, Amsterdam, The Netherlands. 2010
[2] Fang J Q. Lake level changes and their relationship with climatic fluctuations in the past decades in China [J]. Transactions of Oceanology and Limnology, 1990, 3: 914 [方金琪. 气候波动在我国近期湖泊变化中的作用. 海洋湖沼通报, 1990, 3: 914]
[3] Song X, Cao T, Zhu G R, et al. Adaptive comparison of Potamageton maackianus and P. malaianus to various water depths in an experimental study [J]. Resources and Environment in the Yangtze Basin, 2014, 23(8): 10811089 [宋鑫, 曹特, 祝国荣, 等. 微齿眼子菜与马来眼子菜对水深变化的适应性比较研究. 长江流域资源与环境, 2014, 23(8): 10811089]
[4] Wei A H, Chow-Fraser P. Synergistic impact of water level fluctuation and invasion of Glyceria on Typha in a freshwater marsh of Lake Ontario [J]. Aquatic Botany, 2006, 84(1): 6369
[5] Wang J W, Zou Y Y, Yu D. The diversity, niche breadth, and niche overlap of aquatic plants in the Oujiang River [J]. Acta Hydrobiologica Sinica, 2015, 39(6): 11841197 [王金旺, 邹颖颖, 于丹. 瓯江流域水生植物多样性与生态位研究. 水生生物学报, 2015, 39(6): 11841197]
[6] Yang X, Zhang Q C, Sun S Y, et al. Effects of water depth on the growth of Vallisneria natans and photosynthetic systemⅡphotochemical characteristics of the leaves [J]. Chinese Journal of Applied Ecology, 2014, 25(6): 16231631 [杨鑫, 张启超, 孙淑雲, 等. 水深对苦草生长及叶片PSⅡ光化学特性的影响. 应用生态学报, 2014, 25(6): 16231631]
[7] Yuan L Y, Li S C, Li W. The effects of water level fluctuation on the winter bud formation of submerged macrophyte Vallisneria spinulosa [J]. Journal of Jiangxi Normal University (Natural Science), 2013, 37(4): 355358 [袁龙义, 李守淳, 李伟. 水深变化对刺苦草冬芽形成的影响研究. 江西师范大学学报(自然科学版), 2013, 37(4): 355358]
[8] Ma J M, Cheng S P, He F, et al. practice and implication of establishing aquatic vegetation in lake Yuehu in Wuhan, China [J]. Acta Hydrobiologica Sinica, 2009, 33(2): 222229 [马剑敏, 成水平, 贺锋, 等. 武汉月湖水生植被重建的实践与启示. 水生生物学报, 2009, 33(2): 222229]
[9] Van Geest G J, Wolters H, Roozen F C J M, et al. Water-level fluctuations affect macrophyte richness in floodplain lakes [J]. Hydrobiologia, 2005, 539(1): 239248
[10] Cooke G D. Lake level drawdown as a macrophyte control technique [J]. Journal of the American Water Resources Association, 1980, 16(2): 317322
[11] You W H, Yu D, Xie D, et al. Overwintering survival and regrowth of the invasive plant Eichhornia crassipes are enhanced by experimental warming in winter [J]. Aquatic Biology, 2013, 19(1): 4553
[12] Cui X H, Xiong B H, Pu Y H, et al. Comparative study of regeneration and colonization ability in five submersed macrophytes [J]. Acta Phytoecologica Sinica, 2000, 24(4): 502505. [崔心红, 熊秉红, 蒲云海, 等. 5种沉水植物无性繁殖和定居能力的比较研究. 植物生态学报, 2000, 24(4): 502505]
[13] You H. Study on the ecological adaptiveness of five submersed macrophytes to eutrophic water [D]. Thesis for Master of Science. Nanjing Agricultural University, Nanjing. 2006, 3343. [游灏. 五种沉水植物对富营养化水体的生态适应性研究. 硕士学位论文, 南京农业大学, 南京. 2006, 3343]
[14] Xu W W, Hu W P, Deng J C, et al. Influence of harvesting Potamogeton crispus in a submerged plant community on the growth of submerged aquatic plants and their effects on water quality [J]. Ecology and Environmental Sciences, 2015, 24(7): 12221227 [徐伟伟, 胡维平, 邓建才, 等. 菹草生物量控制对群落中沉水植物生长及水质的影响. 生态环境学报, 2015, 24(7): 12221227]
[15] Xie Y. Study on purification capacity of the aquatic plant communities under different hydrodynamic conditions in water of Taihu Lake [D]. Thesis for Master of Science. Nanjing forestry university, Nanjing. 2012, 1012. [谢宇. 不同水动力下太湖水生植物群落对水体净化能力研究.硕士学位论文, 南京林业大学, 南京. 2012, 1012]
[16] Reto J S, Alaka S, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria [J]. Photochemistry and Photobiology, 1995, 61(1): 3242
[17] Arnon D I. Copper enzymes in isolated chloroplasts polyphenoloxidases in Beta vulgaris [J]. Plant Physiology, 1949, 24: 115
[18] Zhang Z L, Qu W J. Experimental Manual of Physiology [M]. Beijing: Higher Education Press. 2004, 127128. [张志良, 瞿伟菁. 植物生理学实验指导. 北京: 高等教育出版社. 2004, 127128]
[19] Warton D I, Hui F K C. The arcsine is asinine: the analysis of proportions in ecology [J]. Ecology, 2011, 92(1): 310
[20] Wang L Z, Wang G X, Ge X G, et al. Influence of different sediment nutrients on growth and photosynthesis fluorescence character isotics of Hydrilla verticillata (L. f) Royle [J]. Acta Ecologica Sinica, 2010, 30(2): 473480. [王立志, 王国祥, 葛绪广, 等. 底质营养盐负荷对轮叶黑藻生长和光合荧光特性的影响. 生态学报, 2010, 30(2): 473480]
[21] Su W H, Zhang G F, Zhang Y S, et al. The photosynthetic characteristics of five submerged aquatic plants [J]. Acta Hydrobiologica Sinica, 2004, 28(4): 391395. [苏文华, 张光飞, 张云孙, 等. 5种沉水植物的光合特征. 水生生物学报, 2004, 28(4): 391395]
[22] Chen K N. Study on biology and ecology of Potamogeton pectinatus L and its application for ecological restoration in Dianchi lake [D]. Thesis for Master of Science. Nanjing Agricultural University, Nanjing. 2002, 6870. [陈开宁. 篦齿眼子菜生物、生态学及其在滇池富营养水体生态修复中的应用研究. 硕士学位论文, 南京农业大学, 南京. 2002, 6870]
[23] Jin P, Hu L W, Jin T X,et al.Responses of the photosynthetic capacity of Elodea nuttallii to three ecological factors [J]. Journal of Hydroecology, 2013, 34(1): 2529. [靳萍, 胡灵卫, 靳同霞,等. 伊乐藻光合能力对三种生态因子的响应,水生态学杂志, 2013, 34(1): 2529]
[24] Chen R Z, Huang S Z, Song S Q, et al. Plant Physiology [M]. Guangzhou: Sun Yat-sen University Press. 1998, 33. [陈润政, 黄上志, 宋松泉, 等. 植物生理学. 广州: 中山大学出版社. 1998, 33]
[25] Hussner A, Hofstra D, Jahns P, et al. Response capacity to CO2 depletion rather than temperature and light effects explain the growth success of three alien Hydrocharitaceae compared with native Myriophyllum triphyllum in New Zealand [J]. Aquatic Botany, 2015, 120(part B): 205211
[26] Li Q. Influence mechanism of environment factors on the growth and development of submerged macrophytes [D]. Thesis for Doctor of Science. Nanjing Agricultural University, Nanjing. 2007, 5063. [李强. 环境因子对沉水植物生长发育的影响机制. 博士学位论文, 南京师范大学, 南京. 2007, 5063]
[27] Simpson D A. Displacement of Elodea canadensis Michx by Elodea nuttallii (Planch.) H. St. John in the British Isles [J]. Watsonia, 1990, 18: 173177
[28] Guo H T, Cao T, Ni L Y. Effects of different nutrient conditions on the growth of a submerged macrophyte, Vallisneria natans, in a mesocosm experiment [J]. Journal of Lake Science, 2008, 20(2): 221227. [郭洪涛, 曹特, 倪乐意. 中等实验规模下不同营养环境对苦草(Vallisneria natans)生长的影响. 湖泊科学, 2008, 20(2): 221227]
[29] Ma J, Qin X Y, Zhou X. Study of physiological and biochemical properties of four species of aquatic plants under stress of sewage [J]. Journal of Green Science and Technology, 2013, 5: 5255. [马佳, 覃晓燕, 周希. 四种水生植物在污水胁迫下的生理生化特性研究. 绿色科技, 2013, 5: 5255]
[30] Li J, Lin P, Dong Y, et al. Effect of morphology and physiology of wetland plants on Plateaus at different altitudes [J]. Plant Science Journal, 2013, 31(4): 370377 [李娟, 林萍, 董瑜, 等. 海拔梯度对高原湿地植物形态和生理学效应研究. 植物科学学报, 2013, 31(4): 370377]
[31] Fan S F, Liu C H, Yu D, et al. Differences in leaf nitrogen content photosynthesis, and resource-use efficiency between Eichhornia crassipes and a native plant Monochoria vaginalis in response to altered sediment nutrient levels [J]. Hydrobiologia, 2013, 711(1): 129137
[32] Zhu H, Ma R J. Comparison of photosynthetic characteristics between two hydrophytic invasive plants [J]. Journal of Northwest A F University (Nat. Sci. Ed.), 2010, 38(5): 193198. [朱慧, 马瑞君. 2种水生入侵植物光合特性的比较. 西北农林科技大学学报, 2010, 38(5): 193198]
[33] Zehnsdorf A, Hussner A, Eismann F, et al. Management options of invasive Elodea nuttallii and Elodea canadensis [J]. Limnologica, 2015, 51(March): 110117br [10] Cooke G D. Lake level drawdown as a macrophyte control technique [J]. Journal of the American Water Resources Association, 1980, 16(2): 317322
[34] You W H, Yu D, Xie D, et al. Overwintering survival and regrowth of the invasive plant Eichhornia crassipes are enhanced by experimental warming in winter [J]. Aquatic Biology, 2013, 19(1): 4553
[35] Cui X H, Xiong B H, Pu Y H, et al. Comparative study of regeneration and colonization ability in five submersed macrophytes [J]. Acta Phytoecologica Sinica, 2000, 24(4): 502505. [崔心红, 熊秉红, 蒲云海, 等. 5种沉水植物无性繁殖和定居能力的比较研究. 植物生态学报, 2000, 24(4): 502505]
[36] You H. Study on the ecological adaptiveness of five submersed macrophytes to eutrophic water [D]. Thesis for Master of Science. Nanjing Agricultural University, Nanjing. 2006, pp: 3343. [游灏. 五种沉水植物对富营养化水体的生态适应性研究. 硕士学位论文, 南京农业大学, 南京. 2006, 3343]
[37] Xu W W, Hu W P, Deng J C, et al. Influence of harvesting Potamogeton crispus in a submerged plant community on the growth of submerged aquatic plants and their effects on water quality [J]. Ecology and Environmental Sciences, 2015, 24(7): 12221227 [徐伟伟, 胡维平, 邓建才, 等. 菹草生物量控制对群落中沉水植物生长及水质的影响. 生态环境学报, 2015, 24(7): 12221227]
[38] Xie Y. Study on purification capacity of the aquatic plant communities under different hydrodynamic conditions in water of Taihu Lake [D]. Thesis for Master of Science. Nanjing forestry university, Nanjing. 2012, pp: 1012. [谢宇. 不同水动力下太湖水生植物群落对水体净化能力研究.硕士学位论文, 南京林业大学, 南京. 2012, pp: 1012]
[39] Reto J S, Alaka S, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria [J]. Photochemistry and Photobiology, 1995, 61(1): 3242
[40] Arnon D I. Copper enzymes in isolated chloroplasts polyphenoloxidases in Beta vulgaris [J]. Plant Physiology, 1949, 24: 115
[41] Zhang Z L, Qu W J. Experimental Manual of Physiology [M]. Beijing: Higher Education Press. 2004, 127128. [张志良, 瞿伟菁. 植物生理学实验指导. 北京: 高等教育出版社. 2004, 127128]
[42] Warton D I, Hui F K C. The arcsine is asinine: the analysis of proportions in ecology [J]. Ecology, 2011, 92(1): 310
[43] Wang L Z, Wang G X, Ge X G, et al. Influence of different sediment nutrients on growth and photosynthesis fluorescence character isotics of Hydrilla verticillata (L . f) Royle [J]. Acta Ecologica Sinica, 2010, 30(2): 473480. [王立志, 王国祥, 葛绪广, 等. 底质营养盐负荷对轮叶黑藻生长和光合荧光特性的影响. 生态学报, 2010, 30(2): 473480]
[44] Su W H, Zhang G F, Zhang Y S, et al. The photosynthetic characteristics of five submerged aquatic plants [J]. Acta Hydrobiologica Sinica, 2004, 28(4): 391395. [苏文华, 张光飞, 张云孙, 等. 5种沉水植物的光合特征. 水生生物学报, 2004, 28(4): 391395]
[45] Chen K N. Study on biology and ecology of Potamogeton pectinatus L and its application for ecological restoration in Dianchi lake [D]. Thesis for Master of Science. Nanjing Agricultural University, Nanjing. 2002, pp: 6870. [陈开宁. 篦齿眼子菜生物、生态学及其在滇池富营养水体生态修复中的应用研究. 硕士学位论文, 南京农业大学, 南京. 2002, pp: 6870]
[46] Jin P, Hu L W, Jin T X,et al.Responses of the photosynthetic capacity of Elodea nuttallii to three ecological factors[J]. Journal of Hydroecology, 2013, 34(1): 2529. [靳萍, 胡灵卫, 靳同霞,等. 伊乐藻光合能力对三种生态因子的响应,水生态学杂志, 2013, 34(1): 2529]
[47] Chen R Z, Huang S Z, Song S Q, et al. Plant Physiology [M]. Guangzhou: Sun Yat-sen University Press. 1998, 33. [陈润政, 黄上志, 宋松泉, 等. 植物生理学. 广州: 中山大学出版社. 1998, 33]
[48] Hussner A, Hofstra D, Jahns P, et al. Response capacity to CO2 depletion rather than temperature and light effects explain the growth success of three alien Hydrocharitaceae compared with native Myriophyllum triphyllum in New Zealand [J]. Aquatic Botany, 2015, 120(part B): 205211
[49] Li Q. Influence mechanism of environment factors on the growth and development of submerged macrophytes [D]. Thesis for Doctor of Science. Nanjing Agricultural University, Nanjing. 2007, pp: 5063. [李强. 环境因子对沉水植物生长发育的影响机制. 博士学位论文, 南京师范大学, 南京. 2007, pp: 5063]
[50] Simpson D A. Displacement of Elodea canadensis Michx by Elodea nuttallii (Planch.) H. St. John in the British Isles [J]. Watsonia, 1990, 18: 173177
[51] Guo H T, Cao T, Ni L Y. Effects of different nutrient conditions on the growth of a submerged macrophyte, Vallisneria natans, in a mesocosm experiment [J]. Journal of Lake Science, 2008, 20(2): 221227. [郭洪涛, 曹特, 倪乐意. 中等实验规模下不同营养环境对苦草(Vallisneria natans)生长的影响. 湖泊科学, 2008, 20(2): 221227]
[52] Ma J, Qin X Y, Zhou X. Study of physiological and biochemical properties of four species of aquatic plants under stress of sewage [J]. Journal of Green Science and Technology, 2013, 5: 5255. [马佳, 覃晓燕, 周希. 四种水生植物在污水胁迫下的生理生化特性研究. 绿色科技, 2013, 5: 5255]
[53] Li J, Lin P, Dong Y, et al. Effect of morphology and physiology of wetland plants on Plateaus at different altitudes [J]. Plant Science Journal, 2013, 31(4): 370377. [李娟, 林萍, 董瑜, 等. 海拔梯度对高原湿地植物形态和生理学效应研究. 植物科学学报, 2013, 31(4): 370377]
[54] Fan S F, Liu C H, Yu D, et al. Differences in leaf nitrogen content photosynthesis, and resource-use efficiency between Eichhornia crassipes and a native plant Monochoria vaginalis in response to altered sediment nutrient levels [J]. Hydrobiologia, 2013, 711(1): 129137
[55] Zhu H, Ma R J. Comparison of photosynthetic characteristics between two hydrophytic invasive plants [J]. Journal of Northwest A F University (Nat. Sci. Ed.), 2010, 38(5): 193198. [朱慧, 马瑞君. 2种水生入侵植物光合特性的比较. 西北农林科技大学学报, 2010, 38(5): 193198]
[56] Zehnsdorf A, Hussner A, Eismann F, et al. Management options of invasive Elodea nuttallii and Elodea canadensis [J]. Limnologica, 2015, 51(March): 110117
-
期刊类型引用(7)
1. 李建,丁洪亮,颜剑,操瑜,尹炜. 汉江中段伊乐藻过度生长的生态调控研究. 水生态学杂志. 2023(04): 29-34 . 百度学术
2. 刘向东,侯志勇,谢永宏,于晓英,李旭,曾静. 水位对洞庭湖湿地4种典型沉水植物的影响. 湖泊科学. 2021(01): 181-191 . 百度学术
3. 黄晓龙,谢洪民,魏伟伟,李宽意. 不同水深对挺水植物形态和生理指标的影响. 环境科学研究. 2021(11): 2706-2713 . 百度学术
4. 罗姗姗,曹昀,纪欣圣,许令明,王佳艺,王文林. 水深对黑藻叶绿素含量和抗氧化酶活性的影响. 生态学杂志. 2019(01): 221-228 . 百度学术
5. 杨昊,罗学刚,丁翰林,王焯. 铀胁迫下伊乐藻的生理响应与富集特性研究. 生物技术通报. 2019(03): 39-46 . 百度学术
6. 曲文静,乔娅楠,王灵艳,唐占辉. 燕子花形态、生理和繁殖对水位变化的响应. 湿地科学. 2018(01): 79-84 . 百度学术
7. 刘娜,曹前进. 不同基质中水鳖对共存的穗花狐尾藻和金鱼藻的影响. 水生生物学报. 2017(02): 420-427 . 本站查看
其他类型引用(10)
计量
- 文章访问数: 1310
- HTML全文浏览量: 1
- PDF下载量: 248
- 被引次数: 17