虾-贝-红树林耦合循环水养殖系统中微生物群落分析
Analysis of microbial community structure in mangrove constructed wetland-mariculture coupling system
-
摘要: 海水循环水养殖系统是重要的生态养殖模式发展趋势之一, 为了深入了解循环水养殖生态系统, 通过对系统各功能区水体中细菌16S rRNA基因V4V5区进行高通量测序和生物信息学分析, 从微生物生态学角度分析了循环水养殖系统不同功能区的细菌群落结构动态。测序分析结果显示, 海水循环水养殖系统中优势细菌种群分别属于变形菌门(Proteobacteria)、蓝藻门(Cyanobacteria)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和浮霉菌门(Planctomycetes)。红树林湿地水体中变形菌门和厚壁菌门丰度较高, 而对虾养殖池的拟杆菌门和浮霉菌门丰度较高。在不同优势类群中, 变形菌门多样性指数平均值最高, 其次是拟杆菌门, 厚壁菌门最低。在各功能区中, 红树林细菌多样性最高, 虾池最低。MDS分析结果显示虾池、贝池和红树林湿地水体中细菌群落结构有明显差异, 虾池与其他功能区差异最大。研究表明, 高密度对虾养殖对虾池水体中细菌群落有显著影响, 但其影响在循环水养殖系统后续功能区中逐渐减弱。Abstract: Bacteria play a key role in the biological geochemical cycle and degradation of organic contamination in pond ecosystem. It is important to understand the dynamics of bacterial community structure in recirculating aquaculture system during shrimp and shellfish rearing. In this study, bacterioplankton community structure in mangrove constructed wetland-mariculture coupling system was investigated by using high-throughput sequencing with 16S rDNA. High-throughput sequencing analysis indicated that the dominant OTUs were Proteobacteria, Cyanobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Planctomycetes. Proteobacteria and firmicutes were the most dominant phyla in mangrove wetland, while bacteroidetes and planctomycetes were the most abundant in shrimp pond. The analysis of Shannon-Wiener indices inferred that proteobacteria communities were the highest, whereas firmicutes were the lowest. The diversity of bacterial phyla in shrimp pond was lower than that of the other station (except firmicutes), whereas the diversity of bacterial phyla in mangrove wetland was higher than that of the other station (except actinobacteria). Multidimensional scaling revealed the changes in the microbial community structure of different stations. The microbial community structure in shrimp pond was markedly different from other stations in recirculating mariculture system, suggesting that shrimp farming has a great influence on bacterioplankton community structure.
-
-
[1] Lotz J M. Disease control and pathogen status assurance in an SPF-based shrimp aquaculture industry, with particular reference to the United States[A]. In: Flegel T W, MacRae I H (Eds.), Diseases in Asian Aquaculture Ⅲ, Fish Health Section[C]. Manila, Philippines, Asian Fisheries Society. 1997, 243254
[2] Naylor R, Burke M. Aquaculture and ocean resources: raising tigers of the sea[J]. Annual Review of Environment and Resources, 2005, 30: 185218
[3] Moss S M. Dietary importance of microbes and detritus in penaeid shrimp aquaculture[A]. In: Lee C S, O'Bryen P (Eds.), Microbial Approaches to Aquatic Nutrition within Environmentally Sound Aquaculture Production Systems[C] Baton Rouge, Louisiana, World Aquaculture Society. 2002, 19
[4] Balcxazar J L, de Blas I, Ruiz-Zarzuela I, et al. The role of probiotics in aquaculture[J]. Veterinary Microbiology, 2006, 114(34): 173186
[5] Itoi S, Niki A, Sugita H. Changes in microbial communities associated with the conditioning of filter material in recirculating aquaculture systems of the pufferfish Takifugu rubripes[J]. Aquaculture, 2006, 256(14): 287295
[6] Lexonard N, Guiraud J P, Gasset E, et al. Bacteria and nutrients-nitrogen and carbon- in a recirculating system for sea bass production[J]. Aquacultural Engineering, 2002, 26(2): 111127
[7] Michaud L, Blancheton J P, Bruni V, et al. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters[J]. Aquacultural Engineering, 2006, 34(3): 224233
[8] Sugita H, Nakamura H, Shimada T. Microbial communities associated with filter materials in recirculating aquaculture systems of freshwater fish[J]. Aquaculture, 2005, 243(14): 403409
[9] Zhu P, Ye Y, Pei F, et al. Characterizing the structural diversity of a bacterial community associated with filter materials in recirculating aquaculture systems of Scortum barcoo[J]. Canadian Journal of Microbiology, 2012, 58(3): 303310
[10] Beseres J J, Lawrence A L, Feller R J. Practical equivalence of laboratory and field measurements of gut passage time in two penaeid shrimp species[J]. Marine Ecology Progress Series, 2006, 309: 221231
[11] Beardsley C, Moss S, Malfatti F, et al. Quantitative role of shrimp fecal bacteria in organic matter fluxes in a recirculating shrimp aquaculture system[J]. FEMS Microbiology Ecology, 2011, 77(1): 134145
[12] Mohita V, Archambaultb P, Toupointb N, et al. Phylogenetic differences in attached and free-living bacterial communities in a temperate coastal lagoon during summer, revealed via high-throughput 16S rRNA gene sequencing[J]. Applied and Environmental Microbiology, 2014, 80(7): 20712083
[13] Qian Z S, Fu L, Ding J, et al. Enrichment of denitrifying anaerobic methane oxidation microbes in a hollow fiber membrane bioreactor[J]. Journal of University of Science and Technology of China, 2014, 44(11): 887892 [钱祝胜, 付亮, 丁静, 等, 中空纤维膜生物反应器富集反硝化厌氧甲烷氧化菌群的研究. 中国科学技术大学学报, 2014, 44(11): 887892]
[14] Tang J X, Wang Z W, Ma J X, et al. Identifying predominant strains causing membrane biofouling by using 454 high-throughput pyrosequencing[J]. Microbiology China, 2014, 41(2): 391398 [唐霁旭, 王志伟, 马金星, 等. 454高通量焦磷酸测序法鉴定膜生物反应器膜污染优势菌种. 微生物学通报, 2014, 41(2): 391398]
[15] Zhang X, Yan Q Y, Yu Y H, et al. Spatiotemporal pattern of bacterioplankton in Donghu Lake[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(3): 554564
[16] Yao Y D, Li G, Tao L, et al. Bacterial diversity investigation on an integrated system of constructed wetland and pond aquaculture[J]. Environmental Science Technology, 2011, 34(7): 5055 [姚延丹, 李谷, 陶玲, 等. 复合人工湿地-池塘养殖生态系统细菌多样性研究. 环境科学与技术, 2011, 34(7): 5055]
[17] Xiong J, Guo G, Mahmood Q, et al. Nitrogen removal from secondary effluent by using integrated constructed wetland system[J]. Ecological Engineering, 2011, 37(4): 659662
[18] Maltais-Landry G, Maranger R, Brisson J, et al. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands[J]. Water Research, 2009, 43(2): 535545
[19] Li F, Liu Y, Chen G Q, et al. Petroleum Hydrocarbon content in oyster and purifying effect of mangrove in mangrove plantation-aquaculture coupling systems[J]. Chinese Journal of Applied and Environmental Biology, 2012, 18(3): 432437 [李飞, 刘玉, 陈冠秋, 等. 红树种植-养殖耦合系统牡蛎石油烃含量及红树净化效果. 应用与环境生物学报, 2012, 18(3): 432437]
[20] Le'onard N, Blancheton J P, Guiraud J P. Populations of heterotrophic bacteria in an experimental recirculating aquaculture system[J]. Aquacultural Engineering, 2000, 22(12): 109120
[21] Sun J, Wang S Y, Zhang D C. Diversity of culturable bacteria from the soil of root system of mangrove forest of Beigang island in Hainan Province[J]. Marine Sciences, 2014, 38(7): 2733 [孙静, 王素英, 张德超. 海南红树林根系土壤中可培养细菌的多样性分析. 海洋科学, 2014, 38(7): 2733]
计量
- 文章访问数: 1288
- HTML全文浏览量: 1
- PDF下载量: 260