EFFECTS OF PFOS ON BURST SWIMMING PERFORMANCE AND METABOLIC RECOVERY IN JUVENILE SPINIBARBUS SINENSIS
-
摘要: 为探究水体全氟辛烷磺酸(PFOS)污染对鱼类爆发游泳及其代谢恢复能力的影响, 将中华倒刺鲃幼鱼(Spinibarbus sinensis)暴露在不同浓度(0、0.32、0.8、2和5 mg/L)PFOS后, 测定PFOS暴露对其静止代谢率(RMR)、爆发游泳速度(Uburst)以及运动力竭后代谢恢复特征的影响。结果发现, 暴露浓度对实验鱼的Uburst和相对爆发游泳速度(rUburst)均影响显著(P<0.05), 5 mg/L PFOS暴露导致Uburst和rUburst分别下降了17.4%和10.8%, PFOS对rUburst的影响表现出“非单调剂量效应”; 暴露浓度对实验鱼的RMR影响显著(P<0.05), 5 mg/L PFOS暴露导致RMR显著升高, 但PFOS对运动后代谢峰值(MMR)、代谢率增量(MS)、代谢变化倍率(F-MS)、力竭运动后过量氧耗(EPOC)无显著影响(P>0.05)。研究结果提示: PFOS污染改变实验鱼能量代谢水平的下限, 而对其代谢水平的上限无明显的限制性作用; PFOS污染将可能对鱼类捕食——逃避捕食者、穿越激流寻找适宜生境等生存关联的生命活动起到负面影响, 但对无氧代谢关联的代谢恢复能力无显著的生态毒理效应。Abstract: To assess the effects of PFOS pollution on burst swimming performance and metabolic recovery of fish, juvenile Spinibarbus sinensis were exposed to different PFOS concentrations (0, 0.32, 0.8, 2 and 5 mg/L) for 28d. There after, the burst swimming speed (Uburst), relative Uburst (rUburst), resting metabolic rate (RMR) and metabolic recovery after exhaustive swimming of the fish were measured. The results showed that PFOS had a profound effect on the Uburst and rUburst of fish (P<0.05). TheUburst and rUburst were reduced by 17.4% and 10.8%, respectively, upon exposure to 5 mg/L PFOS. A possible non-monotonic dose response was found in rUburst to PFOS. Moreover, PFOS significantly increased RMR (P<0.05), but did not have a marked effect on maximum metabolic rate (MMR), metabolic scope (MS), factorial metabolic scope (F-MS) and excess post-exercise oxygen consumption (EPOC) (P>0.05). The results indicated that PFOS had more dramatical effect on RMR than MMR of the experimental fish. Presumably, PFOS negatively impact survival-related activities such as capturing prey, avoiding predators, hunting for suitable habitats without significant ecotoxicological effects on metabolic recovery associated with anaerobic metabolism.
-
Keywords:
- PFOS /
- Burst swimming /
- Resting metabolic rate /
- Metabolic recovery /
- Spinibarbus sinensis
-
-
表 1 PFOS对中华倒刺鲃幼鱼RMR和力竭运动后代谢恢复的影响
Table 1 The effects of PFOS on RMR and metabolic recovery after exhaustive swimming in juvenile Spinibarbus sinensis
指标Index PFOS浓度 PFOS concentration (mg/L) F P 0 0.32 0.8 2 5 RMR [mg O2 /(kg·h)] 107.9±8.77ab 104.2±4.31a 132.5±7.26bc 132.3±5.06bc 135.6±7.29c 5.04 0.002 MMR [mg O2/(kg·h)] 590.4±34.6 569.6±29.4 640.5±50.0 603.6±28.2 599.2±27.2 0.55 0.702 MS [mg O2/(kg·h)] 482.5±32.3 465.4±29.4 508.1±54.1 471.3±30.6 463.6±29.7 0.25 0.908 F-MS 5.76±0.50 5.55±0.31 5.09±0.56 4.68±0.34 4.57±0.32 1.53 0.205 EPOC (mg O2/kg) 129.8±10.8 113.9±12.2 119.7±15.9 102.0±10.8 98.9±11.0 1.07 0.378 注: 同一行数值间无共同上标字母表示有显著性差异(P<0.05)Note: Values in each row without a common superscript letter denote significant difference among groups (P<0.05) -
[1] Liu Z, Lu Y, Wang P, et al. Pollution pathways and release estimation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in central and eastern China [J]. Science of the Total Environment, 2017, 580: 1247—1256 doi: 10.1016/j.scitotenv.2016.12.085
[2] 夏继刚, 牛翠娟, 孙麓垠. PFOS对斑马鱼胚胎及仔鱼的生态毒理效应. 生态学报, 2013, 33(23): 7408—7416 Xia J G, Niu C J, Sun L Y. Ecotoxicological effects of exposure to PFOS on embryo and larva of zebrafish Danio rerio [J]. Acta Ecologica Sinica, 2013, 33(23): 7408—7416
[3] 夏继刚, 曹振东, 付世建, 等. PFOS暴露对锦鲫自发运动与潜在游泳能力的影响. 水生生物学报, 2013, 37(6): 1158—1163 Xia J G, Cao Z D, Fu S J, et al. Spontaneous activity and potential swimming ability in juvenile goldfish, Carassius auratus, in response to PFOS toxicity [J]. Acta Hydrobiologica Sinica, 2013, 37(6): 1158—1163
[4] Xia J, Nie L, Mi X, et al. Behavior, metabolism and swimming physiology in juvenile Spinibarbus sinensis exposed to PFOS under different temperatures [J]. Fish Physiology and Biochemistry, 2015, 41(3): 1293—1304
[5] Xia J, Ma Y, Guo W, et al. Temperature-dependent effects of PFOS on risk recognition and fast-start performance in juvenile Spinibarbus sinensis [J]. Aquatic Biology, 2015, 24(2): 101—108 doi: 10.3354/ab00640
[6] Suja F, Pramanik B K, Zain S M. Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: a review paper [J]. Water Science and Technology, 2009, 60(6): 1533—1544 doi: 10.2166/wst.2009.504
[7] van Asselt E D, Rietra R, Römkens P, et al. Perfluorooctane sulphonate (PFOS) throughout the food production chain [J]. Food Chemistry, 2011, 128(1): 1—6 doi: 10.1016/j.foodchem.2011.03.032
[8] Xia J, Niu C. Acute toxicity effects of perfluorooctane sulfonate on sperm vitality, kinematics and fertilization success in zebrafish [J]. Chinese Journal of Oceanology and Limnology, 2017, 35(4): 723—728 doi: 10.1007/s00343-017-6086-5
[9] Brigden K, Santillo D, Allsopp M. Perfluorinated chemicals, alkylphenols and metals in fish from the upper, middle and lower sections of the Yangtze River, China [R]. Greenpeace Research Laboratories Technical Note. 2010
[10] Lin A Y C, Panchangam S C, Ciou P S. High levels of perfluorochemicals in Taiwan’s wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosystems [J]. Chemosphere, 2010, 80(10): 1167—1174 doi: 10.1016/j.chemosphere.2010.06.018
[11] Floehr T, Xiao H, Scholz-Starke B, et al. Solution by dilution? A review on the pollution status of the Yangtze River [J]. Environmental Science and Pollution Research, 2013, 20(10): 6934—6971 doi: 10.1007/s11356-013-1666-1
[12] 金一和, 丁梅, 翟成, 等. 长江三峡库区江水和武汉地区地面水中PFOS和PFOA污染现状调查. 生态环境, 2006, 15(3): 486—489 doi: 10.3969/j.issn.1674-5906.2006.03.008 Jin Y H, Ding M, Zhai C, et al. An investigation of the PFOS and PFOA pollution in Three Gorges Reservoir areas of the Yangtze River and surface water of Wuhan areas [J]. Ecology and Environment, 2006, 15(3): 486—489 doi: 10.3969/j.issn.1674-5906.2006.03.008
[13] Han J, Fang Z. Estrogenic effects, reproductive impairment and developmental toxicity in ovoviparous swordtail fish (Xiphophorus helleri) exposed to perfluorooctane sulfonate (PFOS) [J]. Aquatic Toxicology, 2010, 99(2): 281—290 doi: 10.1016/j.aquatox.2010.05.010
[14] Jacquet N, Maire M A, Landkocz Y, et al. Carcinogenic potency of perfluorooctane sulfonate (PFOS) on Syrian hamster embryo (SHE) cells [J]. Archives of Toxicology, 2012, 86(2): 305—314 doi: 10.1007/s00204-011-0752-8
[15] Chang S, Allen B C, Andres K L, et al. Evaluation of serum lipid, thyroid, and hepatic clinical chemistries in association with serum perfluorooctanesulfonate (PFOS) in cynomolgus monkeys after oral dosing with potassium PFOS [J]. Toxicological Sciences, 2017, 156(2): 387—401
[16] Reidy S P, Kerr S R, Nelson J A. Aerobic and anaerobic swimming performance of individual Atlantic cod [J]. Journal of Experimental Biology, 2000, 203(2): 347—357
[17] Langerhans R B, Reznick D N. Ecology and Evolution of Swimming Performance in Fishes: Predicting Evolution with Biomechanics. In: Domenici P, Kapoor B G (Eds.), Fish Locomotion: an Eco-ethological Perspective [M]. British Isles: Science Publishers. 2010, 200—248
[18] Cai L, Johnson D, Fang M, et al. Effects of feeding, digestion and fasting on the respiration and swimming capability of juvenile sterlet sturgeon (Acipenser ruthenus, Linnaeus 1758) [J]. Fish Physiology and Biochemistry, 2017, 43(1): 279—286 doi: 10.1007/s10695-016-0285-4
[19] Zhang L L, Niu J F, Li Y, et al. Evaluating the sub-lethal toxicity of PFOS and PFOA using rotifer Brachionus calyciflorus [J]. Environmental Pollution, 2013, 180(3): 34—40
[20] Fu S, Xie X, Cao Z. Effect of dietary composition on specific dynamic action in southern catfish Silurus meridionalis Chen [J]. Aquaculture Research, 2005, 36(14): 1384—1390 doi: 10.1111/are.2005.36.issue-14
[21] Li X, Cao Z, Fu S. The effect of exercise training on the metabolic interaction between feeding and locomotion in the juvenile southern catfish (Silurus meridionalis Chen) [J]. Journal of Experimental Zoology A, 2010, 313(9): 557—563
[22] Fu S J, Zeng L Q, Li X M, et al. Effect of meal size on excess post-exercise oxygen consumption in fishes with different locomotive and digestive performance [J]. Journal of Comparative Physiology B, 2009, 179(4): 509—517 doi: 10.1007/s00360-008-0337-x
[23] Blake R W. Fish functional design and swimming performance [J]. Journal of Fish Biology, 2004, 65(5): 1193—1222 doi: 10.1111/jfb.2004.65.issue-5
[24] Handelsman C, Claireaux G, Nelson J A. Swimming ability and ecological performance of cultured and wild European sea bass (Dicentrarchus labrax) in coastal tidal ponds [J]. Physiological and Biochemical Zoology, 2010, 83(3): 435—445 doi: 10.1086/651099
[25] Thomas J K, Wiseman S, Giesy J P, et al. Effects of chronic dietary selenomethionine exposure on repeat swimming performance, aerobic metabolism and methionine catabolism in adult zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2013, 131(2): 112—122
[26] Di Santo V, Kenaley C P, Lauder G V. High postural costs and anaerobic metabolism during swimming support the hypothesis of a U-shaped metabolism-speed curve in fishes [J]. Proceedings of the National Academy of Sciences, 2017, 114(49): 13048—13053 doi: 10.1073/pnas.1715141114
[27] Vom Saal F S, Timms B G, Montano M M, et al. Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses [J]. Proceedings of the National Academy of Sciences, 1997, 94(5): 2056—2061 doi: 10.1073/pnas.94.5.2056
[28] Willingham E. Endocrine-disrupting compounds and mixtures: unexpected dose-response [J]. Archives of Environmental Contamination and Toxicology, 2004, 46(2): 265—269
[29] Vandenberg L N, Colborn T, Hayes T B, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses [J]. Endocrine Reviews, 2012, 33(3): 378—455 doi: 10.1210/er.2011-1050
[30] Vandenberg L N. Non-monotonic dose responses in studies of endocrine disrupting chemicals: bisphenol a as a case study [J]. Dose-response, 2014, 12(2): 259—276
[31] Welshons W V, Thayer K A, Judy B M, et al. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity [J]. Environmental Health Perspectives, 2003, 111(8): 994—1006 doi: 10.1289/ehp.5494
[32] Xu D, Li C, Wen Y, et al. Antioxidant defense system responses and DNA damage of earthworms exposed to perfluorooctane sulfonate (PFOS) [J]. Environmental Pollution, 2013, 174(5): 121—127
[33] Jeon J, Lim H K, Kannan K, et al. Effect of perfluorooctanesulfonate on osmoregulation in marine fish, Sebastes schlegeli, under different salinities [J]. Chemosphere, 2010, 81(2): 228—234 doi: 10.1016/j.chemosphere.2010.06.037
[34] Dorts J, Kestemont P, Marchand P A, et al. Ecotoxicoproteomics in gills of the sentinel fish species, Cottus gobio, exposed to perfluorooctane sulfonate (PFOS) [J]. Aquatic Toxicology, 2011, 103(1-2): 1—8 doi: 10.1016/j.aquatox.2011.01.015
[35] Lee C G, Devlin R H, Farrell A P. Swimming performance, oxygen consumption and excess post-exercise oxygen consumption in adult transgenic and ocean-ranched coho salmon [J]. Journal of Fish Biology, 2003, 62(4): 753—766 doi: 10.1046/j.1095-8649.2003.00057.x
[36] Luo Y, Wang W, Zhang Y, et al. Effects of starvation on the excess post-exercise oxygen consumption of juvenile Nile tilapia (Oreochromis niloticus) [J]. Marine and Freshwater Behaviour and Physiology, 2013, 45(5): 333—342 doi: 10.1080/10236244.2012.750059