MEAL SIZE ON SWIMMING PERFORMANCE AND EXCESS POST-EXERCISE OXYGEN CONSUMPTION IN JUVENILE ANDRIAS DAVIDIANUS
-
摘要:
为了考察摄食水平对两栖动物运动能力及其能量代谢特征的影响, 选取大鲵(Andrias davidianus)幼体为实验对象, 分别测定其在不同摄食水平(0、1%、4%和10%体重)下的感应流速(Induced velocity)、暴发游泳速度(Burst swimming speed)和力竭运动后过量耗氧(Excess post-exercise oxygen consumption, EPOC)。研究发现: 在不同摄食水平下, 大鲵幼体绝对和相对感应流速(分别为20.78、21.52、23.67、21.79 cm/s和2.4、2.49、2.77、2.56 bl/s)及绝对和相对暴发游泳速度(分别为32.65、32.92、35.42、33.02 cm/s和3.80、3.81、4.15、3.85 bl/s)没有显著性差异; 随着摄食水平的增加, 运动前代谢率[分别为66.88、82.51、95.57和106.32 mg O2/(kg·h)]和运动后代谢峰值[分别为148.21、155.08、166.93和167.63 mg O2/(kg·h)]逐步增加, 4%和10%摄食水平组显著高于对照组(P<0.05); 随着摄食水平的增加, 代谢率增量[分别为81.33、72.57、71.36和61.31 mg O2/(kg·h)]、峰值比率(分别为2.26、1.89、1.76和1.58)、运动后恢复时间(分别为55.00min、49.60min、38.80min和32.10min)和过量耗氧(分别为27.48、23.68、21.42和15.36 mg O2/kg)逐步降低, 4%和10%摄食水平组显著低于对照组(P<0.05)。综上所述: 大鲵幼体游泳能力相对较小且不受摄食的影响, 在其野外栖息地保护和增殖放流生境流速选择等实践中应充分考虑。摄食后大鲵幼体游泳能力的维持、有氧代谢能力的增加和力竭运动后恢复时间的缩短可能有利于大鲵幼体的捕食和避敌活动, 有助于适应复杂的溪流生境, 进而提高其生存适合度。
Abstract:Feeding and locomotion are two important physiological activities that occur simultaneously in life history of Andrias davidianus. Their exercise behavior varies according to different meal sizes, which is the result of long-term evolution and adaptation to different living environments. In order to investigate the effects of meal size on locomotion ability and energy metabolic of amphibians, we selected the juvenile Andrias davidianus as experimental subjects. We measured the induction velocity, burst swimming speed and excess post-exercise oxygen consumption (EPOC) at different meal sizes (0, 1%, 4%, and 10% of body weight). The induction velocity (20.78, 21.52, 23.67, 21.79 cm/s and 2.4, 2.49, 2.77, 2.56 bl/s, respectively) and burst swimming speed (32.65, 32.92, 35.42, 33.02 cm/s and 3.80, 3.81, 4.15, 3.85 bl/s, respectively) of juvenile A. davidianus were not significantly different among different meal sizes. With increasing meal size, the pre-exercise metabolic rate [66.88, 82.51, 95.57 and 106.32 mg O2/(kg·h), respectively] and the peak post-exercise metabolic rate [148.21, 155.08, 166.93 and 167.63 mg O2/(kg·h), respectively] increased gradually and were significantly higher in the 4% and 10% meal size groups than those in the control group (P<0.05). The increment of metabolic rate [81.33, 72.57, 71.36 and 61.31 mg O2/(kg·h), respectively], factorial scope (2.26, 1.89, 1.76 and 1.58, respectively), duration (55.00min, 49.60min, 38.80min, 32.10min, respectively) and EPOC magnitude (27.48, 23.68, 21.42 and 15.36 mg O2/kg, respectively) declined progressively, and these indexes in 4% and 10% meal size groups were lower than that in the control group (P<0.05). Our results suggested that the swimming performance of juvenile A. davidianus is not affected by feeding. These movement characteristics of this species should be fully considered in the practice of habitat protection and release in wild. The maintenance of swimming ability, the increase of aerobic metabolism and the shortening of recovery time after feeding may be beneficial for juvenile A. davidianus to hunt and escape from predators, resulting in better adaptation to the complex stream habitat and improved survival fitness.
-
-
图 1 循环密闭式代谢测定仪模式图
A. 水槽; B. 溶氧测定仪; C. 投饵孔; D. 内循环管; E. 呼吸管; F. 溶氧仪探头; G. 小水泵; H. 水处理系统
Figure 1. Circulatory closed respirometer
A. tank; B. oxygen metre; C. feed hole; D. inner circulation tube; E. respirometer chamber; F. dissolved oxygen probe; G. small water pump; H. water-processing and temperature-controlling system
图 5 摄食水平对大鲵幼体力竭运动后代谢参数的影响(平均值±标准误, 样本数=10)
不同小写字母表示差异显著(P<0.05)
Figure 5. The effects of meal size on several parameters of excess post-exercise oxygen consumption (EPOC) response in juvenile Chinese giant salamander (Andrias davidianus; mean±SE, n=10)
Values without common lowercase letters indicate significant difference (P<0.05)
表 1 大鲵幼体体重、体长和摄食水平(平均值±标准误)
Table 1 The body mass, body length and meal size of juvenile Chinese giant salamander (Andrias davidianus) in the present study (mean±SE)
指标Index 对照组
Control group1%摄食水平组
1% meal size group4%摄食水平组
4% meal size group10%摄食水平组
10% meal size group游泳能力Swimming performance 样本数Sample (N) 10 10 10 10 体重Body mass (g) 6.81±0.18 6.75±0.13 6.82±0.12 6.82±0.14 体长Body length (cm) 8.62±0.14 8.67±0.11 8.58±0.11 8.60±0.13 摄食水平Meal size (%) — 1.02±0.01c 4.01±0.01b 10.70±0.39a EPOC 样本数Sample (N) 10 10 10 10 体重Body mass (g) 6.96±0.36 6.83±0.31 6.87±0.23 6.99±0.15 体长Body length (cm) 8.50±0.16 8.67±0.16 8.69±0.12 8.68±0.13 摄食水平Meal size (%) — 1.01±0.01c 4.18±0.19b 10.32±0.29a 注: 上标字母不同的同一行数值差异显著(P<0.05)Note: Values with different small letter superscripts are significantly different in the same row (P<0.05) 表 2 摄食水平对大鲵幼体游泳能力和力竭运动后代谢参数的单因素方差统计分析表
Table 2 The effect of meal size on several variables related to swimming performance and EPOC in juvenile Chinese giant salamander (Andrias davidianus) based on the results of One-way analysis of variance (ANOVA)
指标
Index显著性
Significance绝对感应流速Absolute induction velocity F3, 39=0.340; P=0.797 相对感应流速Relative induction velocity F3, 39=0.413; P=0.745 绝对暴发游泳速度Absolute burst swimming speed F3, 39=0.342; P=0.795 相对暴发游泳速度Relative burst swimming speed F3, 39=0.380; P=0.768 静止代谢率Rest metabolic rate F3, 39=0.157; P=0.924 运动前代谢率Pre-exercise metabolic rate F3, 39=39.446; P<0.001 运动后代谢峰值Peak post-exercise metabolic rate F3, 39=8.474; P<0.001 代谢率增量Increment of metabolic rate F3, 39=5.868; P=0.002 峰值比率Factorial scope F3, 39=19.863; P<0.001 运动后恢复时间Duration F3, 39=25.190; P<0.001 过量耗氧EPOC magnitude F3, 39=6.596; P=0.001 -
[1] Fu S J, Zeng L Q, Li X M, et al. Effect of meal size on excess post-exercise oxygen consumption in fishes with different locomotive and digestive performance [J]. Journal of Comparative Physiology B, 2009, 179(4): 509-517. doi: 10.1007/s00360-008-0337-x
[2] Fu S J, Zeng L Q, Li X M, et al. The behavioural, digestive and metabolic characteristics of fishes with different foraging strategies [J]. Journal of Experimental Biology, 2009, 212(14): 2296-2302. doi: 10.1242/jeb.027102
[3] Pang X, Cao Z D, Fu S J. The effects of temperature on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish (Carassius auratus, Cyprinus carpio and Spinibarbus sinensis) [J]. Comparative Biochemistry and Physiology,Part A:Molecular & Integrative Physiology, 2011, 159(3): 253-260.
[4] Li X M, Cao Z D, Peng J L, et al. The effect of exercise training on the metabolic interaction between digestion and locomotion in juvenile darkbarbel catfish (Peltebagrus vachelli) [J]. Comparative Biochemistry and Physiology,Part A:Molecular & Integrative Physiology, 2010, 156(1): 67-73.
[5] Li X M, Cao Z D, Fu S J. The effect of exercise training on the metabolic interaction between feeding and locomotion in the juvenile southern catfish (Silurus meridionalis Chen) [J]. Journal of Experimental Zoology Part A,Ecological Genetics and Physiology, 2010, 313(9): 557-563.
[6] 李秀明, 陈昌瑞, 吴川, 等. 摄食水平对岩原鲤幼鱼摄食代谢和力竭运动后代谢特征的影响 [J]. 水产学报, 2012, 36(11): 1731-1738. doi: 10.3724/SP.J.1231.2012.27783 Li X M, Chen C R, Wu C, et al. Effect of meal size on postprandial metabolic response and excess post-exercise oxygen consumption in juvenile rock carp (Procypris rabaudi) [J]. Journal of Fisheries of China, 2012, 36(11): 1731-1738. doi: 10.3724/SP.J.1231.2012.27783
[7] 张连博, 姚维志, 宋一清. 黑水河3种鳅科鱼类感应流速的初步研究 [J]. 水生态学杂志, 2022, 43(2): 102-107. doi: 10.15928/j.1674-3075.202010130293 Zhang L B, Yao W Z, Song Y Q. Preliminary study on the induction velocity of three cobitidae species in Heishui River [J]. Journal of Hydroecology, 2022, 43(2): 102-107. doi: 10.15928/j.1674-3075.202010130293
[8] 蔡露, 王伟营, 王海龙, 等. 鱼感应流速对体长的响应及在过鱼设施流速设计中的应用 [J]. 农业工程学报, 2018, 34(2): 176-181. doi: 10.11975/j.issn.1002-6819.2018.02.024 Cai L, Wang W Y, Wang H L, et al. Response of induced flow speed to fish body length and its application in flow design of fish passage facilities [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 176-181. doi: 10.11975/j.issn.1002-6819.2018.02.024
[9] 王晓臣, 邢娟娟. 5种鱼感应流速比较分析 [J]. 水生态学杂志, 2018, 39(2): 77-81. doi: 10.15928/j.1674-3075.2018.02.011 Wang X C, Xing J J. Comparison of induction velocities for five fish species [J]. Journal of Hydroecology, 2018, 39(2): 77-81. doi: 10.15928/j.1674-3075.2018.02.011
[10] 夏继刚, 李秀明, 付世建. PFOS对中华倒刺鲃幼鱼暴发游泳及运动后代谢恢复的影响 [J]. 水生生物学报, 2019, 43(2): 356-361. doi: 10.7541/2019.044 Xia J G, Li X M, Fu S J. Effects of PFOS on burst swimming performance and metabolic recovery in juvenile Spinibarbus sinensis [J]. Acta Hydrobiologica Sinica, 2019, 43(2): 356-361. doi: 10.7541/2019.044
[11] 付世建, 曹振东, 曾令清, 等. 鱼类游泳运动——策略与适应性进化 [M]. 北京: 科学出版社, 2014: 1-2. Fu S J, Cao Z D, Zeng L Q, et al. Strategies and Adaptive Evolution of Swimming in Fishes [M]. Beijing: Science Press, 2014: 1-2.
[12] Gaesser G A, Brooks G A. Metabolic bases of excess post-exercise oxygen consumption: a review [J]. Medicine and Science in Sports and Exercise, 1984, 16(1): 29-43.
[13] Lee C G, Devlin R H, Farrell A P. Swimming performance, oxygen consumption and excess post-exercise oxygen consumption in adult transgenic and ocean-ranched coho salmon [J]. Journal of Fish Biology, 2003, 62(4): 753-766. doi: 10.1046/j.1095-8649.2003.00057.x
[14] 李秀明, 张耀光, 何春梅, 等. 力竭追赶训练对两种鲤科鱼类呼吸循环系统参数和力竭运动后代谢特征的影响 [J]. 水生生物学报, 2019, 43(1): 78-85. doi: 10.7541/2019.010 Li X M, Zhang Y G, He C M, et al. The effect of exhaustive chasing training on parameters of respiratory and circulatory system and excess post-exercise oxygen consumption in juvenile qingbo (Spinibarbus sinensis) and rock carp (Procypris rabaudi) [J]. Acta Hydrobiologica Sinica, 2019, 43(1): 78-85. doi: 10.7541/2019.010
[15] Milligan C L. Metabolic recovery from exhaustive exercise in rainbow trout [J]. Comparative Biochemistry and Physiology Part A: Physiology, 1996, 113(1): 51-60. doi: 10.1016/0300-9629(95)02060-8
[16] Lee C G, Farrell A P, Lotto A, et al. Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming [J]. The Journal of Experimental Biology, 2003, 206(18): 3253-3260. doi: 10.1242/jeb.00548
[17] Bellinger K L, Thorgaard G H, Carter P A. Domestication is associated with reduced burst swimming performance and increased body size in clonal rainbow trout lines [J]. Aquaculture, 2014(420-421): 154-159.
[18] Stabenau E K, Sasser A, Schulte C. The effects of pyrene exposure on exercise performance, muscle contraction, and mitochondrial O2 consumption in the leopard frog (Rana pipiens) [J]. Journal of Environmental Science and Health, Part A, 2008, 43(6): 576-583. doi: 10.1080/10934520801893535
[19] Mogali S M, Saidapur S K, Shanbhag B A. Behavioral responses of tadpoles of Duttaphrynus melanostictus (Anura: Bufonidae) to cues of starved and fed dragonfly larvae [J]. Phyllomedusa: Journal of Herpetology, 2020, 19(1): 93-98. doi: 10.11606/issn.2316-9079.v19i1p93-98
[20] Li X M, Fu S J, Li X J, et al. The effects of meal size on postprandial metabolic response and post-exercise metabolic recovery process in juvenile black carp (Mylopharyngodon piceus) [J]. Marine and Freshwater Behaviour and Physiology, 2018, 51(2): 79-91. doi: 10.1080/10236244.2018.1497427
[21] 彭亮跃. 中国大鲵基础生物学及其进化的研究 [D]. 长沙: 湖南师范大学, 2010: 28-81. Peng L Y. Study on the biological characteristics and the evolution of Chinese giant salamander [D]. Changsha: Hunan Normal University, 2010: 28-81.
[22] Turvey S T, Chen S, Tapley B, et al. Imminent extinction in the wild of the world’s largest amphibian [J]. Current Biology, 2018, 28(10): 592-594. doi: 10.1016/j.cub.2018.04.005
[23] Luo Q, Tong F, Song Y, et al. Observation of the breeding behavior of the Chinese giant salamander (Andrias davidianus) using a digital monitoring system [J]. Animals, 2018, 8(10): 161-174. doi: 10.3390/ani8100161
[24] Zhang L, Kouba A, Wang Q, et al. The effect of water temperature on the growth of captive Chinese giant salamanders (Andrias davidianus) reared for reintroduction: a comparison with wild salamander body condition [J]. Herpetologica, 2014, 70(4): 369-377. doi: 10.1655/HERPETOLOGICA-D-14-00011R1
[25] 王双, 李战福, 李虹, 等. 大鲵幼体蛋白质的需求量 [J]. 水产学报, 2020, 44(1): 99-110. Wang S, Li Z F, Li H, et al. Dietary protein requirement of juvenile giant salamander (Andrias davidianus) [J]. Journal of Fisheries of China, 2020, 44(1): 99-110.
[26] Zhang L, Zhao H, Willard S, et al. Spatial distribution and seasonal movement patterns of reintroduced Chinese giant salamanders [J]. BMC Zoology, 2019, 4(1): 7-18. doi: 10.1186/s40850-019-0046-9
[27] Wang C, Zhou Y L, Zhu Q H, et al. Effects of heat stress on the liver of the Chinese giant salamander Andrias davidianus: Histopathological changes and expression characterization of Nrf2-mediated antioxidant pathway genes [J]. Journal of Thermal Biology, 2018(76): 115-125. doi: 10.1016/j.jtherbio.2018.07.016
[28] Yan F, Lü J, Zhang B, et al. The Chinese giant salamander exemplifies the hidden extinction of cryptic species [J]. Current Biology, 2018, 28(10): 590-592. doi: 10.1016/j.cub.2018.04.004
[29] 张伟, 曹振东, 付世建. 溶氧水平对鲫鱼代谢模式的影响 [J]. 生态学报, 2012, 32(18): 5806-5812. doi: 10.5846/stxb201108051147 Zhang W, Cao Z D, Fu S J. Effect of dissolved oxygen level on metabolic mode in juvenile crucian carp [J]. Acta Ecologica Sinica, 2012, 32(18): 5806-5812. doi: 10.5846/stxb201108051147
[30] 王永猛, 李志敏, 涂志英, 等. 基于雅砻江两种裂腹鱼游泳能力的鱼道设计 [J]. 应用生态学报, 2020, 31(8): 2785-2792. doi: 10.13287/j.1001-9332.202008.040 Wang Y M, Li Z M, Tu Z Y, et al. Fishway design based on the swimming ability of two Schizothorax species in the Yalung River, China [J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2785-2792. doi: 10.13287/j.1001-9332.202008.040
[31] Hou Q M, Fu S J, Liang Z Q, et al. Effect of meal size on the postprandial metabolic response in Chinese giant salamander Andrias davidianus larvae [J]. Aquatic Biology, 2022(31): 31-38.
[32] Widder P D, Bidwell J R. Tadpole size, cholinesterase activity, and swim speed in four frog species after exposure to sub-lethal concentrations of chlorpyrifos [J]. Aquatic Toxicology, 2008, 88(1): 9-18. doi: 10.1016/j.aquatox.2008.02.008
[33] Wilcox S C, Lappin A K. Burst-swimming performance predicts the outcome of cannibalistic interactions in green poison frog larvae (Dendrobates auratus) [J]. Journal of Experimental Zoology Part A,Ecological Genetics and Physiology, 2013, 319(9): 495-504.
[34] 陆洪良, 耿军, 徐卫, 等. 东方蝾螈幼体热耐受性和游泳表现的热驯化响应 [J]. 生态学报, 2017, 37(5): 1603-1610. Lu H L, Geng J, Xu W, et al. Physiological response and changes in swimming performance after thermal acclimation in juvenile Chinese fire-belly newts, Cynops orientalis [J]. Acta Ecologica Sinica, 2017, 37(5): 1603-1610.
[35] 樊晓丽, 林植华. 外来捕食者克氏原螯虾对黑斑侧褶蛙不同发育阶段幼体表型与运动能力的影响 [J]. 生态学报, 2020, 40(5): 1731-1739. Fan X L, Lin Z H. Effects of exotic predator Procambarus clarkiion on the phenotype and performance of Pelophylax nigromaculatus larva [J]. Acta Ecologica Sinica, 2020, 40(5): 1731-1739.
[36] Peterson C C, Nagy K A, Diamond J. Sustained metabolic scope [J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(6): 2324-2328. doi: 10.1073/pnas.87.6.2324
[37] Weiner J. Physiological limits to sustainable energy budgets in birds and mammals: ecological implications [J]. Trends in Ecology & Evolution, 1992, 7(11): 384-388.
[38] Hammond K A, Chappell M A, Cardullo R A, et al. The mechanistic basis of aerobic performance variation in red junglefowl [J]. The Journal of Experimental Biology, 2000, 203(13): 2053-2064. doi: 10.1242/jeb.203.13.2053
[39] Alsop D, Wood C. The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in juvenile rainbow trout (Oncorhynchus mykiss) [J]. The Journal of Experimental Biology, 1997, 200(17): 2337-2346. doi: 10.1242/jeb.200.17.2337
[40] 李秀明, 袁建明, 张耀光, 等. 有氧运动训练和摄食对中华倒刺鲃幼鱼力竭运动后代谢特征的影响 [J]. 水生生物学报, 2017, 41(2): 277-284. doi: 10.7541/2017.34 Li X M, Yuan J M, Zhang Y G, et al. The effect of aerobic exercise training and feeding on excess post-exercise oxygen consumption in juvenile qingbo (Spinibarbus sinensis) [J]. Acta Hydrobiologica Sinica, 2017, 41(2): 277-284. doi: 10.7541/2017.34
[41] Secor S M, Hicks J W, Bennett A F. Ventilatory and cardiovascular responses of a python (Python molurus) to exercise and digestion [J]. The Journal of Experimental Biology, 2000, 203(16): 2447-2454. doi: 10.1242/jeb.203.16.2447
[42] 李可贵, 曹振东, 付世建. 摄食对鲇鱼幼鱼力竭性运动后过量耗氧的影响 [J]. 水生生物学报, 2012, 36(6): 1035-1040. doi: 10.7541/SP.J.1035.2012.01035 Li K G, Cao Z D, Fu S J. Effect of feeding on excess post-exercise oxygen consumption in juvenile Chinese catfish (Silurus asotus Linnaeus) [J]. Acta Hydrobiologica Sinica, 2012, 36(6): 1035-1040. doi: 10.7541/SP.J.1035.2012.01035
[43] 李秀明, 付世建, 张耀光. 饥饿对鲤幼鱼内脏器官指数和力竭运动后代谢特征的影响 [J]. 水生生物学报, 2021, 45(2): 259-266. doi: 10.7541/2021.2019.167 Li X M, Fu S J, Zhang Y G. Effects of starvation on index of visceral organs and excess post-exercise oxygen consumption of juvenile common carp (Cyprinus carpio) [J]. Acta Hydrobiologica Sinica, 2021, 45(2): 259-266. doi: 10.7541/2021.2019.167
[44] Baldwin J, Seymour R S, Webb G J W. Scaling of anaerobic metabolism during exercise in the estuarine crocodile (Crocodylus porosus) [J]. Comparative Biochemistry and Physiology Part A Physiology, 1995, 112(2): 285-293. doi: 10.1016/0300-9629(95)00100-X
[45] Rose R J, Hodgson D R, Kelso T B, et al. Maximum O2 uptake, O2 debt and deficit, and muscle metabolites in Thoroughbred horses [J]. Journal of Applied Physiology, 1988, 64(2): 781-788. doi: 10.1152/jappl.1988.64.2.781
[46] Kieffer J D. Limits to exhaustive exercise in fish [J]. Comparative Biochemistry and Physiology,Part A:Molecular & Integrative Physiology, 2000, 126(2): 161-179.