BIOSYNTHESIS PATHWAY OF EXTRACELLULAR POLYMERIC SUBSTANCES AND COLONIAL FORMATION OF CYANOBACTERIA UNDERLYING WATER BLOOMS OF MICROCYSTIS
-
摘要: 有毒微囊藻水华在太湖、巢湖和滇池等饮用水源地频繁暴发, 对居民健康和水产养殖等构成严重威胁, 亟需开发新技术加以有效控制和利用。在水华暴发时, 蓝藻大量分泌胞外多聚物而形成细胞群体, 是蓝藻水华发生的关键和前提。蓝藻群体中胶质状胞外多聚物由胞外多糖、蛋白质和其他生物大分子组成, 对其结构、功能和生物合成途径研究了解仍然有限。生物信息学和比较基因组学分析发现微囊藻和其他多种蓝藻中编码大量的具有称之为PEP-CTERM结构域的潜在胞外蛋白质, 这些潜在的蛋白质可能通过特殊的分选系统分泌到细胞表面, 与胞外多糖相互作用形成结构更复杂的胞外多聚物, 介导细胞群体的形成和水华发生。亟需建立微囊藻遗传操作技术, 深入揭示胞外多聚物生物合成和群体形成的分子机制, 寻找控制蓝藻胞外多聚物的组装和分泌及群体形成的关键靶点, 将有助于揭示蓝藻水华形成机理及开发新型控藻技术。Abstract: The harmful algal blooms (HABs) of Microcystis have frequently occurred in the drinking water sources such as Lake Taihu, Chaohu, and Dianchi, posing a severe risk to public health and aquaculture. A series of physical, chemical, and biological measures have been performed for controlling Microcystis blooms in recent years. The secretion of extracellular polymeric substances (EPS) are required for cyanobacterial colonial formation, survival and bloom-forming. Little is known about the biosynthesis pathways of EPS and colonial formation. Previously it has been revealed that multiple putative PEP-CTERM domain-containing proteins are encoded in the genome of Microsytis species and many other cyanobacteria. More recently, we have demonstrated that the PEP-CTERM proteins are required for the floc-formation of Zoogloea resiniphila, a proteobacterium isolated from activated sludge. More interestingly, Microcystis and many other cyanobacteria also encoded a subfamily of PEP-CTERM domain, termed cyano-PEP. It is strongly suggested that such the recently found PEP-CTERM/Cyanoexosortase systems might play a central role in the colonial formation of cyanobacteria. It remains elusive whether the quorum sensing (QS) systems are encoded in cyanobacterial genome and whether the QS is involved in the formation of Microcystis blooms. It is urgent to develop the genetic manipulation in Microcystis and other bloom-forming cyanobacteria for identification of relevant genes and mechanisms underlying colonial formation and for development of Microcystis bloom-controlling techniques.
-
-
表 1 水华蓝藻铜绿微囊藻和菌胶团形成菌喜树脂动胶菌胞外多聚生物合成与蓝藻群体/细菌菌胶团形成相关基因比较
Table 1 Comparison of between bloom-forming cyanobacterium Microcystis aeruginosa NIES-842 and floc-forming proteobacterium Zoogloea resiniphila MMB strain
胞外多聚生物合成与蓝藻群体/细菌菌胶团形成相关基因Extracellular polymeric substance biosynthesis and colony/floc-formation genes 喜树脂动胶菌(菌胶团形成细菌)Zoogloea resiniphila MMB 铜绿微囊藻(水华蓝藻)Microcystis aeruginosa NIES-842 胞外多糖合成与分泌相关基因 以大型基因簇形式集中分布于染色体上 以多个小型基因簇形式散布于染色体上 编码含有PEP-CTERM结构域的蛋白质基因 约20个 33个 调节PEP-CTERM基因转录的PrsK-PrsR二组分系统 有 无 介导PEP-CTERM基因转录的Sigma54因子(RpoN) 有 无 群体感应 未知 未知 -
[1] 孔繁祥, 高光. 大型浅水富营养化湖泊中蓝藻水华形成机理的思考 [J]. 生态学报, 2005, 25(3): 589-595. Kong F X, Gao G. Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes [J]. Acta Ecologica Sinica, 2005, 25(3): 589-595.
[2] 刘建康, 谢平. 揭开武汉东湖蓝藻水华消失之谜 [J]. 长江流域资源与环境, 1999, 8(3): 312-319. Liu J K, Xie P. Unraveling the engima of the disappearance of water bloom from the East Lake (Lake Donghu) of Wuhan [J]. Resources and Environment in the Yangtze Basin, 1999, 8(3): 312-319.
[3] 赵以军, 刘永定. 有害藻类及其微生物防治基础—菌藻关系的研究动态 [J]. 水生生物学报, 1996, 20(2): 173-181. Zhao Y J, Liu Y D. Possible microbial control on the adverse impacts of algae-Information about the relationship between algae and microbes [J]. Acta Hydrobiologica Sinica, 1996, 20(2): 173-181.
[4] Sigee D C, Glenn R, Andrews M J. Biological control of cyanobacteria: principles and possibility [J]. Hydrobiologia, 1999(395/396): 161-172
[5] Lynch M, Shapiro J. Predation, enrichment, and phytoplankton community structure [J]. Limnology and Oceanography, 1981, 26(1): 86-102. doi: 10.4319/lo.1981.26.1.0086
[6] Yang Z, Kong F X, Shi X L, et al. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (Cyanobacteria) during Flagellate grazing [J]. Journal of Phycology, 2008, 44(3): 716-720. doi: 10.1111/j.1529-8817.2008.00502.x
[7] Shen H, Niu Y, Xie P, et al. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria [J]. Freshwater Biology, 2011, 56(6): 1065-1080. doi: 10.1111/j.1365-2427.2010.02551.x
[8] Wang W J, Shen H, Shi P L, et al. Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies [J]. Journal of Applied Phycology, 2015(28): 1111-1123.
[9] Xu F, Zhu W, Xiao M, et al. Interspecific variation in extracellular polysaccharide content and colony formation of Microcystis spp. cultured under different light intensities and temperatures [J]. Journal of Applied Phycology, 2016, 28(3): 1533-1541. doi: 10.1007/s10811-015-0707-1
[10] Gan N Q, Xiao Y, Zhu L, et al. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp [J]. Environmental Microbiology, 2012, 14(3): 730-742. doi: 10.1111/j.1462-2920.2011.02624.x
[11] Plude J L, Parker D L, Schommer O J, et al. Chemical characterization of polysaccharide from the slime layer of the cyanobacterium Microcystis flos-aquae C3-40 [J]. Applied and Environmental Microbiology, 1991, 57(6): 1696-1700. doi: 10.1128/AEM.57.6.1696-1700.1991
[12] Forni C, Telo’ F R, Caiola M G. Comparative analysis of the polysaccharides produced by different species of Microcystis (Chroococcales, Cyanophyta) [J]. Phycologia, 1997, 36(3): 181-185. doi: 10.2216/i0031-8884-36-3-181.1
[13] Wu Z X, Song L R. Physiological comparison between colonial and unicellular forms of Microcystis aeruginosa Kütz. (Cyanobacteria) [J]. Phycologia, 2008, 47(1): 98-104. doi: 10.2216/07-49.1
[14] Li M, Zhu W, Gao L, et al. Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates [J]. Journal of Applied Phycology, 2013(25): 1023-1030. doi: 10.1007/s10811-012-9937-7
[15] Verspagen J M H, Visser P M, Huisman J. Aggregation with clay causes sedimentation of the buoyant cyanobacteria Microcystis spp. [J]. Aquatic Microbial Ecology, 2006, 44(1): 165-174.
[16] Wang Y W, Zhao J, Li J H, et al. Effects of calcium levels on colonial aggregation and buoyancy of Microcystis aeruginosa [J]. Current Microbiology, 2011, 62(2): 679-683. doi: 10.1007/s00284-010-9762-7
[17] Sato M, Amano Y, Machida, M, et al. Colony formation of highly dispersed Microcystis aeruginosa by controlling extracellular polysaccharides and calcium ion concentrations in aquatic solution [J]. Limnology, 2016, 18(1): 111-119.
[18] Xu H C, Yu G H, Jiang H L. Investigation on extracellular polymeric substances from mucilaginous cyanobacterial blooms in eutrophic freshwater lakes [J]. Chemosphere, 2013, 93(1): 75-81. doi: 10.1016/j.chemosphere.2013.04.077
[19] Mazmanian S K, Liu G, Ton-That H, et al. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall [J]. Science, 1999, 284(5428): 760-763.
[20] Haft D H, Paulsen I T, Ward N, et al. Exopolysaccharide-associated protein sorting in environmental organisms: the PEP-CTERM/EpsH system. Application of a novel phylogenetic profiling heuristic [J]. BMC Biology, 2006(4): 29. doi: 10.1186/1741-7007-4-29
[21] Craig J W, Cherry M A, Brady S F. Long-chain N-acyl amino acid synthases are linked to the putative PEP-CTERM/exosortase protein-sorting system in Gram-negative bacteria [J]. Journal of Bacteriology, 2011, 193(20): 5707-5715. doi: 10.1128/JB.05426-11
[22] An W X, Guo F, Song Y L, et al. Comparative genomics analyses on EPS biosynthesis genes required for floc formation of Zoogloea resiniphila and other activated sludge bacteria [J]. Water Research, 2016, 102(1): 494-504.
[23] Gao N, Xia M, Dai J C, et al. Both widespread PEP-CTERM proteins and exopolysaccharides are required for floc formation of Zoogloea resiniphila and other activated sludge bacteria [J]. Environmental Microbiology, 2018, 20(5): 1677-1692. doi: 10.1111/1462-2920.14080
[24] 邱东茹, 高娜, 安卫星, 等. 活性污泥微生物胞外多聚物生物合成途径与菌胶团形成的调控机制 [J]. 微生物学通报, 2019, 46(8): 2080-2089. Qiu D R, Gao N, An W X, et al. Biosynthesis pathway of extracellular polymeric substance and regulatory mechanism underlying floc formation of activated sludge bacteria [J]. Microbiology China, 2019, 46(8): 2080-2089.
[25] Yu D Z, Xia M, Zhang L P, et al. RpoN (σ54) is required for floc formation but not for extracellular polysaccharide biosynthesis in a floc-forming Aquincola tertiaricarbonis strain [J]. Applied and Environmental Microbiology, 2017, 83(14): e00709-717.
[26] 王晶, 高娜, 刘双元, 等. 活性污泥微生物解壳聚糖松江菌中菌胶团形成相关大型基因簇的鉴定和分析 [J]. 微生物学通报, 2019, 46(8): 1946-1953. Wang J, Gao N, Liu S Y, et al. Identification and analysis of a large gene cluster involved in floc formation of activated sludge bacterium Mitsuaria chitosanitabida [J]. Microbiology China, 2019, 46(8): 1946-1953.
[27] 刘亚琦, 刘双元, 高娜, 等. 活性污泥菌胶团/生物絮团形成菌Pseudoduganella eburnean的分离鉴定及基因组分析 [J]. 水生生物学报, 2020, 44(3): 655-662. Liu Y Q, Liu S Y, Gao N, et al. Isolation, identification and genomics analysis of activated sludge floc/biofloc forming Pseudoduganella eburnean strains [J]. Acta Hydrobiologica Sinica, 2020, 44(3): 655-662.
[28] Haft D H, Payne S H, Selengut J D. Archaeosortases and exosortases are widely distributed systems linking membrane transit with posttranslational modification [J]. Journal of Bacteriology, 2012, 194(1): 36-48. doi: 10.1128/JB.06026-11
[29] Yang C, Zhang W, Ren M, et al. Whole-genome sequence of Microcystis aeruginosa TAIHU98, a nontoxic bloom-forming strain isolated from Taihu Lake, China [J]. Genome Announcement, 2013, 1(3): e00333-413.
[30] Kaneko T, Nakajima N, Okamoto S, et al. Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843 [J]. DNA Research, 2007, 14(6): 247-256. doi: 10.1093/dnares/dsm026
[31] Jeong H, Chun S J, Srivastava A, et al. Genome sequences of two cyanobacterial strains, toxic green Microcystis aeruginosa KW (KCTC 18162P) and nontoxic brown Microcystis sp. strain MC19, under xenic culture conditions [J]. Genome Announcement, 2018(6): e00378-418.
[32] Zhang J Y, Guan R, Zhang H J, et al. Complete genome sequence and genomic characterization of Microcystis panniformis FACHB 1757 by third-generation sequencing [J]. Standards in Genomic Sciences, 2016, 11(1): 11. doi: 10.1186/s40793-016-0130-5
[33] Sharif D I, Gallon J, Smith C J, et al. Quorum sensing in cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909 [J]. The ISME Journal, 2008, 2(12): 1171-1182. doi: 10.1038/ismej.2008.68
[34] Romero M, Diggle S P, Heeb S, et al. Quorum quenching activity in Anabaena sp. PCC 7120: identification of AiiC, a novel AHL-acylase [J]. FEMS Microbiology Letters, 2008, 280(1): 73-80. doi: 10.1111/j.1574-6968.2007.01046.x
[35] Romero M, Muro-Pastor A M, Otero A. Quorum sensing N-acyl homoserine lactone signals affect nitrogen fixation in the cyanobacterium Anabaena sp. PCC7120 [J]. FEMS Microbiol Letters, 2011, 315(2): 101-108. doi: 10.1111/j.1574-6968.2010.02175.x
[36] Zhai C M, Zhang P, Shen F, et al. Does Microcystis aeruginosa have quorum sensing [J]? FEMS Microbiology Letters, 2012, 336(1): 38-44. doi: 10.1111/j.1574-6968.2012.02650.x
[37] Dittmann E, Neilan B A, Erhard M, et al. Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806 [J]. Molecular Microbiology, 1997, 26(4): 779-787. doi: 10.1046/j.1365-2958.1997.6131982.x
[38] Tan X M, Zhu T, Shen S, et al. Role of Rbp1 in the acquired chill-light tolerance of cyanobacteria [J]. Journal of Bacteriology, 2011, 193(11): 2675-2683. doi: 10.1128/JB.01454-10
计量
- 文章访问数: 1847
- HTML全文浏览量: 606
- PDF下载量: 126