雨生红球藻虾青素酰基转移酶的鉴定与功能研究

曹黎, 马海燕, 魏自旺, 赵亮, 伍小颖, 严海龙, 胡强, 韩丹翔

曹黎, 马海燕, 魏自旺, 赵亮, 伍小颖, 严海龙, 胡强, 韩丹翔. 雨生红球藻虾青素酰基转移酶的鉴定与功能研究[J]. 水生生物学报, 2020, 44(5): 1143-1151. DOI: 10.7541/2020.132
引用本文: 曹黎, 马海燕, 魏自旺, 赵亮, 伍小颖, 严海龙, 胡强, 韩丹翔. 雨生红球藻虾青素酰基转移酶的鉴定与功能研究[J]. 水生生物学报, 2020, 44(5): 1143-1151. DOI: 10.7541/2020.132
CAO Li, MA Hai-Yan, WEI Zi-Wang, ZHAO Liang, WU Xiao-Ying, YAN Hai-Long, HU Qiang, HAN Dan-Xiang. IDENTIFICATION AND FUNCTIONAL STUDY OF ASTAXANTHIN ACYLTRANSFERASE IN HAEMATOCOCCUS PLUVIALIS[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(5): 1143-1151. DOI: 10.7541/2020.132
Citation: CAO Li, MA Hai-Yan, WEI Zi-Wang, ZHAO Liang, WU Xiao-Ying, YAN Hai-Long, HU Qiang, HAN Dan-Xiang. IDENTIFICATION AND FUNCTIONAL STUDY OF ASTAXANTHIN ACYLTRANSFERASE IN HAEMATOCOCCUS PLUVIALIS[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(5): 1143-1151. DOI: 10.7541/2020.132

雨生红球藻虾青素酰基转移酶的鉴定与功能研究

基金项目: 国家自然科学基金(31570304)资助
详细信息
    作者简介:

    曹黎(1991—), 女, 硕士研究生; 研究方向为虾青素生物合成及代谢调控。E-mail: 847306704@qq.com

    通信作者:

    韩丹翔, E-mail: danxianghan@ihb.ac.cn

  • 中图分类号: Q344+.1

IDENTIFICATION AND FUNCTIONAL STUDY OF ASTAXANTHIN ACYLTRANSFERASE IN HAEMATOCOCCUS PLUVIALIS

Funds: Supported by the National Natural Science Foundation of China (31570304)
    Corresponding author:
  • 摘要: 为研究雨生红球藻(Haematococcus pluvialis)的甘油二酯酰基转移酶(Diacylglycerol acyltransferase, DGAT)是否具有催化虾青素酰基化的功能, 首先通过雨生红球藻的cDNA库克隆得到了一个II型DGAT编码区全长序列(DGTT2)。在甘油三酯(Triacylglycerol, TAG)合成缺陷型酵母Saccharomyces cerevisiae H1246中过表达DGTT2基因发现HpDGTT2不能回补H1246的表型, 即不具有典型的DGAT功能。利用分离得到的雨生红球藻的内质网成功地建立了一个体外的虾青素酰基转移酶酶活测定体系, 添加含有重组HpDGTT2的酵母细胞的微粒体后虾青素酯的含量显著高于对照, 初步表明HpDGTT2具有催化雨生红球藻中虾青素酰基化功能。以上结果为进一步探索雨生红球藻中DGTT2的功能及深入理解虾青素合成在代谢水平的调控奠定了基础。
    Abstract: This study aimed to unravel whether DGATs are involved in the biological processes of astaxanthin acylation in H. pluvialis. A type II DGAT-encoding gene, DGTT2, was identified in H. pluvialis NIES-144 through RNA-seq and cloned from the cDNA library. Overexpression of HpDGTT2 in the TAG-deficient Saccharomyces cerevisiae strain H1246 failed to rescue the TAG-deficient phenotype, indicating that HpDGTT2 cannot utilize diacylglycerol for TAG biosynthesis. Meanwhile, an in vitro enzymatic assay system for measuring astaxanthin:acyl-CoA acyltransferase activity was established successfully by using H. pluvialis endoplasmic reticulum membranes as crude enzymes. When the S. cerevisiae microsomes containing recombinant HpDGTT2 were incorporated into the system, the concentrations of a number of astaxanthin esters increased significantly compared with the control, which indicated that HpDGTT2 possesses astaxanthin acyltransferase activity. This study will provide a basis for further studies on the function and metabolic regulation of HpDGTT2 in astaxanthin biosynthesis.
  • 图  1   推译的雨生红球藻DGTT2蛋白质氨基酸序列及结构域示意图

    其中灰色阴影部分为预测的3个跨膜结构域, 方框内为DGAT2/MGAT功能位点

    Figure  1.   The putative amino acid sequence and e putative conserved domains of Haematococcus pluvialis DGTT2 protein

    The sequences in the shaded boxes and in the red boxes are 3 transmembrane domains and putative conserved domains predicted in Haematococcus pluvialis DGTT2, respectively

    图  2   邻接法构建HpDGTT2氨基酸系统发育进化树(Bootstrap=1000)

    Figure  2.   Phylogenetic tree constructed from the HpDGTT2 amino acid with the neighbor-joining method (Bootstrap=1000)

    图  3   HpDGTT2和CrDGTT2在S. cerevisiae H1246中的表达及功能回补分析

    A. HpDGTT2酵母微粒体蛋白免疫印迹确认; B. HpDGTT2过表达酵母转化子无甘油三酯合成; C. CrDGTT2过表达酵母转化子中检测到甘油三酯

    Figure  3.   Expression of HpDGTT2 and CrDGTT2 in S. cerevisiae H1246 and functional complementation analysis

    A. Western-blotting analysis of S. cerevisiae H1246 harboring pYES2/CT-DGTT2 induction for 8h, 12h, 24h, 48h and 72h, respectively; B. No lipid body observed in HpDGTT2 S. cerevisiae H1246 transformants; C. Lipid body formed in CrDGTT2 S. cerevisiae H1246 transformants

    图  4   虾青素酰基化体外酶活分析体系建立

    A. 为雨生红球藻分离的ER的色素组成色谱图。其中箭头和括号在横坐标的垂直投影分别对应游离虾青素和虾青素酯的保留时间; B. 为雨生红球藻高光缺氮6h、9h、12h、15h和24h时分离的内质网的蛋白免疫印迹结果, 其中BIP为细胞器特异性蛋白标记物; C. 为将雨生红球藻内质网作为虾青素酰基化的粗酶时, 反应体系中实验组和对照组的虾青素酯含量的变化

    Figure  4.   Establishment of astaxanthin acylation in an in vitro enzymatic assay system

    A. Chromatogram of separated ER extracted from Haematococcus pluvialis; B. Western-blotting analysis of separated ER in H. pluvialis under high light stress for 6h, 9h, 12h, 15h and 24h, respectively. BIP was used as ER-specific marker; C. Astaxanthin ester (s) content variation between control group and experimental group when seperated ER was used as crude transacylation enzyme in vitro assay

    图  5   添加含有HpDGTT2的酵母微粒体导致反应体系保留时间分别为20.8min、21.1min 和24.3min的虾青素酯含量的净增加(*, P<0.05)

    Figure  5.   Addition of the yeast microsomes harboring HpDGTT2 led to a net increase in the content of astaxanthin esters with retention times of 20.8min, 21.1min and 24.3min (*, P<0.05)

  • [1]

    Orosa M, Torres E, Fidalgo P, et al. Production and analysis of secondary carotenoids in green algae [J]. Journal of Applied Phycology, 2000, 12(3): 553-556.

    [2]

    Boussiba S. Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response [J]. Physiologia Plantarum, 2000, 108(2): 111-117. doi: 10.1034/j.1399-3054.2000.108002111.x

    [3]

    Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress [J]. Photosynthesis Research, 2010, 106(1-2): 155-177. doi: 10.1007/s11120-010-9583-3

    [4]

    Han D, Li Y, Hu Q. Astaxanthin in microalgae: Pathways, functions and biotechnological implications [J]. Algae, 2013, 28(2): 131-147. doi: 10.4490/algae.2013.28.2.131

    [5]

    Li Y, Sommerfeld M, Chen F, et al. Consumption of oxygen by astaxanthin biosynthesis: A protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae) [J]. Journal of Plant Physiology, 2008, 165(17): 1783-1797. doi: 10.1016/j.jplph.2007.12.007

    [6]

    Li Y, Sommerfeld M, Chen F, et al. Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae) [J]. Journal of Applied Phycology, 2010, 22(3): 253-263. doi: 10.1007/s10811-009-9453-6

    [7]

    Steinbrenner J, Linden H. Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis [J]. Plant Physiology, 2001, 125(2): 810-817. doi: 10.1104/pp.125.2.810

    [8]

    Steinbrenner J, Linden H. Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control [J]. Plant Molecular Biology, 2003, 52(2): 343-356. doi: 10.1023/A:1023948929665

    [9]

    Chen G, Wang B, Han D, et al. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae) [J]. The Plant Journal, 2015, 81(1): 95-107. doi: 10.1111/tpj.12713

    [10]

    Zhao G, Souers A J, Voorbach M, et al. Validation of diacylglycerol acyltransferase I as a novel target for the treatment of obesity and dyslipidemia using a potent and selective small molecule inhibitor [J]. Journal of Medicinal Chemistry, 2008(51): 380-383.

    [11]

    Inokoshi J, Kawamoto K, Takagi Y, et al. Expression of two human acyl-CoA: diacylglycerol acyltransferase isozymes in yeast and selectivity of microbial inhibitors toward the isozymes [J]. The Journal of Antibiotics, 2009(62): 51-54.

    [12]

    King A J, Segreti J A, Larson K J, et al. Diacylglycerol acyltransferase 1 inhibition lowers serum triglycerides in the Zucker Fatty Rat and the Hyperlipidemic Hamster [J]. Journal of Pharmacology and Experimental Therapeutics, 2009(330): 526-531.

    [13]

    Lung S C, Weselake R J. Diacylglycerol acyltransferase: A key mediator of plant triacylglycerol synthesis [J]. Lipids, 2006(41): 1073-1088.

    [14]

    Chen J E, Smith A G. A look at diacylglycerol acyltransferases (DGATs) in algae [J]. Journal of Biotechnology, 2012(162): 28-39.

    [15]

    Nguyen R L, Tam L W, Lefebvre P A. The LF1 gene of Chlamydomonas reinhardtii encodes a novel protein required for flagellar length Control [J]. Genetics, 2005(169): 1415-1424.

    [16]

    Lardizabal K D, Mai J T, Wagner N W, et al. DGAT2 is a new diacylglycerol acyltransferase gene family: purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity [J]. The Journal of Biological Chemistry, 2001(276): 38862-38869.

    [17]

    Durrett T P, McClosky D D, Tumaney A W, et al. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds [J]. Proceedings of the National Academy of Sciences, 2010(107): 9464.

    [18]

    Moellering E R, Benning C. RNA Interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii [J]. Eukaryotic Cell, 2010(9): 97-106.

    [19]

    Sandager L, Gustavsson M H, Ståhl U, et al. Storage lipid synthesis is non-essential in yeast [J]. Journal of Biological Chemistry, 2002(277): 6478-6482.

    [20]

    Stanier R Y, Kunisawa R, Mandel M, et al. Purification and properties of unicellular blue-green algae (order Chroococcales) [J]. Bacteriological Reviews, 1971(35): 171-205.

    [21]

    Kobayashi M, Kakizono T, Nagai S. Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media [J]. Journal of Fermentation and Bioengineering, 1991(71): 335-339.

    [22]

    Li Y, Sommerfeld M, Chen F, et al. Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae) [J]. Journal of Applied Phycology, 2010(22): 253-263.

    [23]

    Wagner M, Hoppe K, Czabany T, et al. Identification and characterization of an acyl-CoA: diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri [J]. Plant Physiology and Biochemistry, 2010(48): 407-416.

    [24]

    Yuan J-P and Chen F. Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the microalga Haematococcus pluvialis [J]. Food Chemistry, 2000(68): 443-448.

    [25]

    Holtin K, Kuehnle M, Rehbein J, et al. Determination of astaxanthin and astaxanthin esters in the microalgae Haematococcus pluvialis by LC-(APCI) MS and characterization of predominant carotenoid isomers by NMR spectroscopy [J]. Analytical and Bioanalytical Chemistry, 2009(395): 1613.

    [26]

    Liu J, Han D, Yoon K, et al. Characterization of type 2 diacylglycerol acyltransferases in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis [J]. The Plant Journal, 2016(86): 3-19.

    [27]

    Fraser P D, Shimada H, Misawa N. Enzymic confirmation of reactions involved in routes to astaxanthin formation, elucidated using a direct substrate in vitro assay [J]. European Journal of Biochemistry, 1998(252): 229-236.

    [28]

    Chen G, Wang B, Han D, et al. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae) [J]. The Plant Journal, 2015(81): 95-107.

    [29]

    Lang N J. Electron microscopic studies of extraplastidic astaxanthin in Haematococcus [J]. Journal of Phycology, 1968(4): 12-19.

    [30]

    Fátima M, Santos J, Mesquita F. Ultrastructural study of Haematococcus lacustris (Girod.) Rostafinski (Volvocales) I. Some aspects of carotenogenesis [J]. Cytologia, 1984(49): 229-241.

    [31]

    Durrett T P, McClosky D D, Tumaney A W, et al. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds [J]. Proceedings of the National Academy of Sciences, 2010(107): 9464.

    [32]

    Boyle N R, Page M D, Liu B, et al. Three Acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas [J]. Journal of Biological Chemistry, 2012(287): 15811-15825.

    [33]

    Merchant S S, Kropat J, Liu B, et al. TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation [J]. Current Opinion in Biotechnology, 2012(23): 352-363.

    [34]

    Yen C-L E, Monetti M, Burri B J, et al. The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters [J]. Journal of Lipid Research, 2005, 46(7): 1502-1511.

    [35]

    Shih M Y S, Kane M A, Zhou P, et al. Retinol esterfication by DGAT1 is essential for retinoid homeostasis in murine skin [J]. Journal of Biological Chemistry, 2009, 284(7): 4292-4299. doi: 10.1074/jbc.M807503200

    [36]

    Yen C-L E, Monetti M, Burri B J, et al. The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters [J]. Journal of Lipid Research, 2005(46): 1502-1511.

    [37]

    Liu Q, Siloto R M P, Lehner R, et al. Acyl-CoA: diacylglycerol acyltransferase: Molecular biology, biochemistry and biotechnology [J]. Progress in Lipid Research, 2012(51): 350-377.

    [38]

    Zhang C, Iskandarov U, Klotz E T, et al. A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds [J]. Journal of Experimental Botany, 2013(64): 3189-3200.

    [39]

    Lippold F, vom Dorp K, Abraham M, et al. Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis [J]. The Plant Cell, 2012(24): 2001.

  • 期刊类型引用(0)

    其他类型引用(1)

图(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-05-04
  • 修回日期:  2019-10-26
  • 网络出版日期:  2020-07-05
  • 发布日期:  2020-09-29

目录

    /

    返回文章
    返回