捕食驯化对胭脂鱼和中华倒刺鲃游泳行为、应激和免疫功能的影响

周龙艳, 李秀明, 付世建

周龙艳, 李秀明, 付世建. 捕食驯化对胭脂鱼和中华倒刺鲃游泳行为、应激和免疫功能的影响[J]. 水生生物学报, 2021, 45(5): 1112-1119. DOI: 10.7541/2021.2020.015
引用本文: 周龙艳, 李秀明, 付世建. 捕食驯化对胭脂鱼和中华倒刺鲃游泳行为、应激和免疫功能的影响[J]. 水生生物学报, 2021, 45(5): 1112-1119. DOI: 10.7541/2021.2020.015
ZHOU Long-Yan, LI Xiu-Ming, FU Shi-Jian. THE EFFECT OF PREDATION ACCLIMATION ON SWIMMING BEHAVIOR, STRESS AND IMMUNE RESPONSES OF JUVENILE MYXOCYPRINUS ASIATICUS AND SPINIBARBUS SINENSIS[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1112-1119. DOI: 10.7541/2021.2020.015
Citation: ZHOU Long-Yan, LI Xiu-Ming, FU Shi-Jian. THE EFFECT OF PREDATION ACCLIMATION ON SWIMMING BEHAVIOR, STRESS AND IMMUNE RESPONSES OF JUVENILE MYXOCYPRINUS ASIATICUS AND SPINIBARBUS SINENSIS[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1112-1119. DOI: 10.7541/2021.2020.015

捕食驯化对胭脂鱼和中华倒刺鲃游泳行为、应激和免疫功能的影响

基金项目: 国家自然科学基金(31670418); 重庆市自然科学基金(cstc2018jcyjAX0150; cstc2017jcyjAX0347)资助
详细信息
    作者简介:

    周龙艳(1994—), 女, 重庆市人; 硕士; 研究方向为鱼类生理生态。E-mail: 1525696595@qq.com

    通信作者:

    付世建, 教授; E-mail: shijianfu9@hotmail.com

THE EFFECT OF PREDATION ACCLIMATION ON SWIMMING BEHAVIOR, STRESS AND IMMUNE RESPONSES OF JUVENILE MYXOCYPRINUS ASIATICUS AND SPINIBARBUS SINENSIS

Funds: Supported by the National Natural Science Foundation of China (31670418); the National Natural Science Foundation of Chongqing Committee (cstc2018jcyjAX0150; cstc2017jcyjAX0347)
    Corresponding author:
  • 摘要: 鱼类对环境的行为和生理适应能力与其在自然界的资源变动状况密切相关, 研究选取胭脂鱼(Myxocyprinus asiaticus)和中华倒刺鲃(Spinibarbus sinensis)幼鱼为研究对象, 考察1周捕食者(乌鳢, Channa argus)驯化对2种鱼类的运动能力(最大匀加速速度)、特异(血浆IgM水平)和非特异免疫(血浆溶菌酶含量)指标和抗氧化能力(血浆超氧化物歧化酶活性)的影响, 及在有无捕食者急性暴露两种条件下的驯化和非驯化鱼群自发游泳行为(游泳速度、运动时间比和个体间距离)和应激反应(血浆皮质醇水平)。研究发现: (1)总体上中华倒刺鲃比胭脂鱼有更快的游泳速度、更为活跃的自发游泳行为、更高的血浆皮质醇和IgM水平; (2)1周捕食驯化导致两种鱼类血浆皮质醇水平、特异免疫和非特异免疫水平的上升, 并且中华倒刺鲃比起胭脂鱼表现的更加明显; (3)急性捕食者暴露导致血浆皮质醇水平上升, 个体间距离下降, 但后者仅在非驯化组有所体现。研究表明: (1)捕食驯化鱼类通过皮质醇动员特异和非特异免疫应对应激, 这些生理和行为的改变可能有利于鱼类增强避敌能力或加快非致死捕食损伤的快速恢复。这表明捕食驯化可作为潜在的增殖放流前的生态锻炼; (2)2种鱼类的行为、免疫等生理基础状态及其对外界刺激的响应程度不尽相同, 未来相似的环境变化可能对两种鱼类的资源产生不同影响。
    Abstract: Whether fish species can adjust their physiological and behavioral traits well to the change of environmental condition of their habitats are key for the future fate of the local population. The aim of the present study was to investigate the physiological and behavioral responses of two endangered fish species, i.e. Chinese sucker (Myxocyprinus asiaticus) and Qingbo (Spinibarbus sinensis) subjected to short-term predation acclimation. We measured the maximum acceleration swimming speed (Ucat), spontaneous shoal behavior (percent time spent moving, median swimming speed and inter-individual distance), innate immune indicator (plasma lysosome activity), specific immune indicator (plasma IgM level), and antioxidant defense ability (plasma SOD activity) of either predation acclimated (reared with snakehead, Channa argus without direct contact) or non-acclimated (as control) juveniles of Chinese sucker and Qingbo for a period of 1 week. The plasma cortisol level and spontaneous activity were measured under both predator present and predator absent conditions. The main results of this study are as follows: (1) Qingbo showed stronger swimming capacity, more active spontaneous behavior, higher plasma cortisol and IgM levels as well as more profound response of both plasma cortisol and IgM level to predation acclimation, compared to those of Chinese sucker. (2) predation acclimation elicited higher plasma cortisol and IgM levels and higher plasma lysosome activity, especially in Qingbo. (3) acute predator exposure resulted in higher plasma cortisol and shorter inter-individual distance whereas the later only manifested in non-acclimated groups. In conclusion, both non-specific and specific immune function up-regulated after predation acclimation possible via the increased release of cortisol which might evolved with purpose to a fast recovery after possible non-lethal hunting. These adjustments indicated that predation training might act as a potential training process for fisheries releasing in the Yangtze River water system. The distinct difference in behavior, immune system and their response to predation acclimation or acute predator exposure suggested that these two fish species might have different fate in near future due to the unpredictable change in environmental factor such as predation.
  • 图  1   捕食驯化对胭脂鱼和中华倒刺鲃游泳速度、血浆免疫和抗氧化指标的影响(平均值±标准误, 游泳速度: n=9; 其他; n=6)

    不同字母者(a, b)表示胭脂鱼和中华倒刺鲃存在种间差异(P<0.05); 星号(*)表示对照组和捕食驯化组数据存在差异(P<0.05)。

    Figure  1.   Effect of predation acclimation on variables of Chinese sucker and Qingbo (Mean±SE, n=9 for swimming speed and n=6 for other variables)

    图  2   捕食驯化和急性捕食者暴露对胭脂鱼和中华倒刺鲃运动能力和自发游泳行为的影响(平均值±标准误, 血浆皮质醇: n=6或自发行为: n=5)

    所有指标中华倒刺鲃显著高于胭脂鱼(P<0.05, 详见表 3); 不同字母者(a, b)表示对照组和捕食驯化组间存在差异(P<0.05); 星号(*)表示有、无急性捕食者暴露个体存在差异(P<0.05)。

    Figure  2.   Effect of predation acclimation and acute predator exposure on variables of Chinese sucker and Qingbo(Mean±SE, n=6 for plasma cortisol level and n=5 for other variables)

    表  1   捕食驯化对胭脂鱼和中华倒刺鲃鱼体大小的影响(平均值±标准误, n=135)

    Table  1   The body length and body mass of two fish species in the present study (Mean±SE, n=135)

    指标Index胭脂鱼Chinese sucker中华倒刺鲃Qingbo
    对照组Control捕食组Predationt-test对照组Control捕食组Predationt-test
    体长Body length (cm)6.41±0.056.64±0.05P=0.0827.29±0.037.39±0.03P=0.178
    体重Body mass (mg)4.82±0.115.53±0.13P=0.0327.49±0.087.69±0.08P=0.348
    下载: 导出CSV

    表  2   种类和捕食驯化对实验参数的双因素协方差统计分析表

    Table  2   The effect of species and predation acclimation on the measured variables based on a two-way analysis of covariance (ANCOVA)

    指标Index最大游泳速度Ucat免疫球蛋白M水平IgM溶菌酶含量Lysozyme超氧化物歧化酶活性SOD
    协变量CovariateF1,31=6.913
    P=0.021
    F1, 19=10.275
    P =0.606
    F1, 19=5.755
    P=0.027
    F1, 19=2.327
    P=0.144
    种类影响Species effect (S)F1,31=184.070
    P<0.001
    F1, 19=58.643
    P<0.001
    F1, 19=3.602
    P=0.073
    F1, 19=2.407
    P=0.137
    处理影响Treatment effect (T)F1,31=0.395
    P=0.534
    F1, 19=31.227
    P<0.001
    F1, 19=43.673
    P<0.001
    F1,19=2/712
    P=0.116
    交互作用S×TF1,31=0.993
    P=0.327
    F1, 19=11.193
    P=0.003
    F1, 19=1.501
    P=0.235
    F1, 19=0.412
    P=0.529
    下载: 导出CSV

    表  3   种类、捕食驯化和急性捕食者暴露对血浆皮质醇水平和自发游泳行为参数的三因素协方差分析表

    Table  3   The effect of species, predation acclimation and predator exposure on plasma cortisol level and variables of spontaneous shoaling behavior based on a three-way ANCOVA in the present study

    指标Index皮质醇
    Cortisol
    游泳速度中值
    Median speed
    运动时间比
    Time spent moving
    个体间距离
    Inter-individual distance
    协变量CovariateF1,63=4.476
    P=0.038
    种类影响Species effect (S)F1,63=46.949
    P<0.001
    F1,32=5.739
    P=0.023
    F1,32=65.579
    P<0.001
    F1,32=21.194
    P<0.001
    处理影响Treatment effect (T)F1,63=17.203
    P<0.001
    F1,32=1.019
    P=0.320
    F1,32=1.641
    P=0.209
    F1,32=0.157
    P=0.695
    暴露影响Exploration effect (E)F1,63=18.489
    P<0.001
    F1,32=0.251
    P=0.620
    F1,32=2.809
    P=0.104
    F1,32=4.147
    P=0.049
    交互作用S×TF1,63=0.929
    P=0.339
    F1,32=0.061
    P=0.806
    F1,32=0.017
    P=0.897
    F1,32=0.681
    P=0.415
    交互作用S×EF1,63=12.805
    P=0.001
    F1,32=0.025
    P=0.877
    F1,32=0.054
    P=0.818
    F1,32=0.002
    P=0.964
    交互作用T×EF1,63=0.653
    P=0.422
    F1,32=0.005
    P=0.946
    F1,32=0.041
    P=0.841
    F1,32=4.679
    P=0.038
    交互作用S×T×EF1,63=2.097
    P=0.153
    F1,32=0.282
    P=0.599
    F1,32=0.857
    P=0.361
    F1,32=0.067
    P=0.797
    下载: 导出CSV
  • [1] 周龙艳. 长江流域几种珍稀鱼类对环境因子胁迫的生理与行为响应研究. 重庆: 重庆师范大学, 2020, 36-46.

    Zhou L Y. Physiological and behavioral responses to environmental stress of several endangered fish species in the Yangtze River[D]. Chongqing: Chongqing Normal university, 2020, 36-46.

    [2] 董纯, 杨志, 龚云, 等. 三峡库区干流鱼类资源现状与物种多样性保护 [J]. 水生态学杂志, 2019, 40(1): 17-23.

    Dong C, Yang Z, Gong Y, et al. Fish resource status and biodiversity conservation in the main channel of Three Gorges Reservior [J]. Journal of Hydroescology, 2019, 40(1): 17-23.

    [3]

    Rousseau Y, Watson R A, Blanchard J L, et al. Evolution of global marine fishing fleets and the response of fished resources [J]. Proceedings of the National Academy of Sciences of The United States of America, 2019, 116(25): 12238-12243. doi: 10.1073/pnas.1820344116

    [4] 成为为, 汪登强, 危起伟, 等. 基于微卫星标记对长江中上游胭脂鱼增殖放流效果的评估 [J]. 中国水产科学, 2014, 21(3): 574-580.

    Cheng W W, Wang D Q, Wei Q W, et al. Effect of restocking enhancement of Chinese sucker in the middle and upper reaches of Yangtze River based on miscrosatellite loci [J]. Journal of Fishery Sciences of China, 2014, 21(3): 574-580.

    [5]

    Brown C, Day R L. The future of stock enhancements: Lessons for hatchery practice from conservation biology [J]. Fish and Fisheries, 2002, 3(2): 79-94. doi: 10.1046/j.1467-2979.2002.00077.x

    [6]

    Neff B D, Garner S R, Pitcher T E. Conservation and enhancement of wild fish populations: Preserving genetic quality versus genetic diversity [J]. Canadian Journal of Fisheries and Aquatic Science, 2011, 68(6): 1139-1154. doi: 10.1139/f2011-029

    [7]

    Solås M R, Skoglund H, Salvanes A G V. Can structural enrichment reduce predation mortality and increase recaptures of hatchery-reared Atlantic salmon Salmo salar L. fry released into the wild [J]? Journal of Fish Biology, 2019, 95(2): 575-588. doi: 10.1111/jfb.14004

    [8]

    Olla B L, Davis M W, Ryer C H. Understanding how hatchery environment represses or promotes the development of behavioral survival skills [J]. Bulletin of Marine Science, 1998, 62(2): 531-550.

    [9]

    Petersson E, Valencia A C, Järvi T. Failure of predator conditioning: An experimental study of predator avoidance in brown trout (Salmo trutta) [J]. Ecology of Freshwater Fish, 2014, 24(3): 329-337.

    [10]

    Fu S J. Flow and stress acclimation both enhance predator avoidance in a common cyprinid fish [J]. Aquatic Biology, 2015, 24(1): 1-8. doi: 10.3354/ab00633

    [11]

    Karvonen A, Aalto‐Araneda M, Virtala AM, et al. Enriched rearing environment and wild genetic background can enhance survival and disease resistance of salmonid fishes during parasite epidemics [J]. Journal of Applied Ecology, 2016, 53(1): 213-221. doi: 10.1111/1365-2664.12568

    [12]

    Langenhof M R, Komdeur J. Why and how the early life environment affects development of coping behaviours [J]. Behavioral Ecology and Sociobiology, 2018, 72(3): 34. doi: 10.1007/s00265-018-2452-3

    [13]

    Brown C, Laland K N. Social learning and life skills training for hatchery reared fish [J]. Journal of Fish Biology, 2005, 59(3): 471-493.

    [14]

    Fu S J, Fu C, Yan G J, et al. Interspecifific variation in hypoxia tolerance, swimming performance and plasticity in cyprinids that prefer different habitats [J]. Journal of Experimental Biology, 2014, 217(4): 590-597.

    [15]

    Hellström G, Magnhagen C. Balancing past and present: How experience influences boldness over time in Eurasian perch [J]. Current Zoology, 2017, 63(2): 159-164.

    [16]

    Tang Z H, Wu Q, Fu S J. Inspection behaviour and inter-individual cooperation in juvenile qingbo: the effects of prior predator exposure and food deprivation [J]. Journal of Ethology, 2018, 36(5-6): 181-190.

    [17]

    Fu C, Fu S J, Wu Q Y, et al. Predation threat modifies relationships between metabolism and behavioural traits but not their ecological relevance in Chinese bream [J]. Marine and Freshwater Behaviour and Physiology, 2017, 50(5-6): 329-344. doi: 10.1080/10236244.2017.1411158

    [18]

    Mesa M G, Poe T P, Gadomski D M, et al. Are all preys created equal? A review and synthesis of differential predation on prey in substandard condition [J]. Journal of Fish Biology, 1994, 45(Supplement A): 81-96.

    [19]

    Barcellos L J G, Ritter F, Kreutz L C, et al. Whole body cortisol increases after direct and visual contact with a predator in zebrafish, Danio rerio [J]. Aquaculture, 2007, 272(1-4): 774-778. doi: 10.1016/j.aquaculture.2007.09.002

    [20]

    Breves J P, Specker J L. Cortisol stress response of juvenile winter flounder (Pseudopleuronectes americanus, Walbaum) to predators [J]. Journal of Experimental Marine Biology and Ecology, 2005, 325(1): 1-7. doi: 10.1016/j.jembe.2005.04.019

    [21]

    Scott G R, Sloman K A, Rouleau C, et al. Cadmium disrupts behavioural and physiological responses to alarm substance in juvenile rainbow trout (Oncorhyncus mykiss) [J]. Journal of the Experimental Biology, 2003, 206(11): 1779-1790. doi: 10.1242/jeb.00353

    [22]

    Lima S L, Bednekoff P A. Temporal variation in danger drives antipredatory behavior: The predation risk allocation hypothesis [J]. The American Naturalist, 1999, 153(6): 649-659. doi: 10.1086/303202

    [23]

    Brown C, Gardner C, Braithwaite. Differential stress response in fish from areas of high and low predation pressure [J]. Journal of Comparative Physiology B, 2005, 175(5): 305-312. doi: 10.1007/s00360-005-0486-0

    [24]

    Byrnes E E, Brown C. Individual personality differences in Port Jackson sharks Heterodontus portusjacksoni [J]. Journal of Fish Biology, 2016, 89(35): 1142-1157.

    [25]

    Réale D, Garant D, Humbries M M, et al. Personality and the emergence of the pace of life syndrome concept at the population level [J]. Philosophical transactions of the Royal Society B, 2010, 365(1560): 4051-4063. doi: 10.1098/rstb.2010.0208

    [26]

    Xu J J, Fu S J, Fu C. Physiological and behavioral stress responses to predators are altered by prior predator experience in juvenile qingbo (Spinibarbus sinensis) [J]. Biology Open, 2019, 8(5): bio041012.

    [27]

    Fischer E K, Harris R M, Hofmann H A, et al. Predator exposure alters stress physiology in guppies across timescales [J]. Hormones and Behavior, 2014, 65(2): 165-172. doi: 10.1016/j.yhbeh.2013.12.010

    [28]

    Lawrence M J, Godin J G J, Cooke S J. Does experimental cortisol elevation mediate risk-taking and antipredator behaviour in a wild teleost fish [J]? Comparative Biochemistry and Physiology A, 2018, 226(1): 75-82.

    [29] 夏继刚, 李秀明, 付世建. PFOS对中华倒刺鲃幼鱼爆发游泳及运动后代谢恢复的影响 [J]. 水生生物学报, 2019, 43(2): 356-361. doi: 10.7541/2019.044

    Xia J G, Li X M, Fu S J. Effect of PFOS on burst swimming performance and metabolic recovery in juvenile Spinibarbus sinensis [J]. Acta Hydrobiologica Sinica, 2019, 43(2): 356-361. doi: 10.7541/2019.044

    [30] 李秀明, 张耀光, 何春梅, 等. 力竭追赶训练对两种鲤科鱼类呼吸循环系统参数和力竭运动后代谢特征的影响 [J]. 水生生物学报, 2019, 43(1): 78-85. doi: 10.7541/2019.010

    Li X M, Zhang Y G, He C M, et al. The effect of exhaustive chasing training on parameters of respiratory and circulatory system and excess post-exercise oxygen consumption in juvenile qingbo (Spinibarbus sinensis) and rock carp (Procypris rabaudi) [J]. Acta Hydrobiologica Sinica, 2019, 43(1): 78-85. doi: 10.7541/2019.010

    [31]

    Bermejo-Poza R, FernándeZ-Muela M, De la Fuente J, et al. Physio-metabolic response of rainbow trout during prolonged food deprivation before slaughter [J]. Fish Physiology and Biochemistry, 2019, 45(1): 253-265. doi: 10.1007/s10695-018-0559-0

    [32]

    Dar S A, Srivastava P P, Varghese T, et al. Temporal changes in superoxide dismutase, catalase, and heat shock protein 70 gene expression, cortisol and antioxidant enzymes activity of Labeo rohita fingerlings subjected to starvation and refeeding [J]. Gene, 2019, 692(1): 94-101.

    [33]

    McCord J M, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) [J]. Journal of Biological Chemistry, 1969, 244(22): 6049-6055. doi: 10.1016/S0021-9258(18)63504-5

    [34]

    Filho D W. Reactive oxygen species, antioxidants and fish mitochondria [J]. Frontiers in Bioscience, 2007, 12(1): 1229-1237. doi: 10.2741/2141

    [35] 庞旭, 付世建, 曹振东, 等. 饥饿和温度驯化对中华倒刺鲃静止代谢和游泳能力的影响 [J]. 生态学报, 2016, 36(7): 1854-1860.

    Pang X, Fu S J, Cao Z D, et al. The effects of fasting and acclimation temperature on the resting metabolism and swimming performance in qingbo (Spinibarbus sinensis) [J]. Acta Ecologica Sinica, 2016, 36(7): 1854-1860.

    [36]

    Liu H S, Zeng L Q, Cao Z D, et al. Effects of different predator stress on vulnerability to predation and the underlying physiological and behavioral mechanisms of this vulnerability in juvenile qingbo (Spinibarbus sinensis) [J]. Acta Ecologica Sinica, 2016, 36(2): 85-90. doi: 10.1016/j.chnaes.2016.01.005

    [37] 张伟, 曹振东, 付世建. 溶氧水平对鲫鱼代谢模式的影响 [J]. 生态学报, 2012, 32(18): 5806-5812. doi: 10.5846/stxb201108051147

    Zhang W, Cao Z D, Fu S J. Effect of dissolved oxygen level on metabolic mode in juvenile crucian carp et al [J]. Acta Ecologica Sinica, 2012, 32(18): 5806-5812. doi: 10.5846/stxb201108051147

    [38] 付世建, 聂利娟, 吴慧, 等. 群体大小对青幼鱼群体特征的影响 [J]. 生态学报, 2016, 36(19): 6062-6070.

    Fu S J, Nie L J, Wu H, et al. The effect of group size on school structure in juvenile black carp [J]. Acta Ecologica Sinica, 2016, 36(19): 6062-6070.

    [39] 王蕾, 唐金玉, 覃英莲, 等. 饥饿对中华倒刺鲃幼鱼代谢、个性和集群的影响 [J]. 生态学报, 2019, 39(3): 1095-1104.

    Wang L, Tang J Y, Qin Y L, et al. Effect of starvation on energy metabolism, fish behavior, and schooling behavior of Spinibarbus sinensis [J]. Atca Ecologica Sinica, 2019, 39(3): 1095-1104.

    [40]

    Zhou L Y, LI X M, Fu C, et al. Effects of acclimation temperature on the thermal tolerance, hypoxia tolerance and swimming performance of two endangered fish species in China [J]. Journal of Comparative Physiology B, 2019, 189(2): 237-247. doi: 10.1007/s00360-018-01201-9

    [41]

    Pang X, Shao F, Ding S, et al. Interspecific differences and ecological correlations of energy metabolism traits in freshwater fishes [J]. Functional Ecology, 2020, 34(3): 616-630. doi: 10.1111/1365-2435.13505

    [42]

    Yan G J, He X K, Cao Z D, et al. An interspecific comparison between morphology and swimming performance in cyprinids [J]. Journal of Evolutionary Biology, 2013, 26(8): 1802-1815. doi: 10.1111/jeb.12182

    [43]

    Wahl D H, Einfalt L M, Wojcieszak D B. Effect of experience with predators on the behavior and survival of muskellunge and tiger muskellunge [J]. Transactions of the American Fisheries Society, 2012, 141(1): 139-146. doi: 10.1080/00028487.2011.652011

    [44]

    Tettweiler G, Miron M, Jenkins M, et al. Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP [J]. Genes and Development, 2005, 19(16): 1840-1843. doi: 10.1101/gad.1311805

    [45]

    Raffaghello L, Lee C, Safdie FM, et al. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(24): 8215-8220. doi: 10.1073/pnas.0708100105

    [46]

    Xia J H, Lin G, Fu G H, et al. The intestinal microbiome of fish under starvation [J]. BMC Genomics, 2014, 15: 266-271. doi: 10.1186/1471-2164-15-266

    [47]

    Liu G Y, Wu Y J, Qin X H, et al. The effect of aerobic exercise training on growth performance, innate immune response and disease resistance in juvenile Schizothorax prenanti [J]. Aquaculture, 2017, 486(3): 18-25.

    [48]

    Choi C Y, Shin H S, Choi Y J, et al. Effect of LED lightspectra on starvation-induced oxidative stress in the cinnamon clownfish Amphiprion melanopus [J]. Comparative Biochemistry and Physiology A, 2012, 163(3-4): 357-363. doi: 10.1016/j.cbpa.2012.07.005

  • 期刊类型引用(9)

    1. 牛雪莹,任志明,吴佳颖,母昌考,王春琳. 三疣梭子蟹受精卵离体孵化技术. 水产学报. 2024(01): 103-111 . 百度学术
    2. 郑金存,叶章颖,赵建,张慧,黄平,覃斌毅,庞毅. 融合摄食过程声像特征的鱼类摄食强度量化方法研究. 海洋与湖沼. 2024(03): 577-588 . 百度学术
    3. 曾足仙,李武新,付世建. 不同生境鱼类在模拟捕食风险下对隐蔽场所的选择偏好:以中华倒刺鲃和德玛森小岩鲷为例. 水生生物学报. 2024(07): 1205-1213 . 本站查看
    4. 王丽英,夏静怡,邓楚可,黄青峰,赵浩翔,陶渝镇,吴奇,夏继刚. 秦岭细鳞鲑与同域物种拉氏鱥的光偏好:生活史阶段效应及种间差异. 生态学报. 2024(17): 7859-7870 . 百度学术
    5. 施迅,周悦,吴诗昊,邢博闻,陈忠. 三体模块化渔业监测AUV结构设计及外形优化. 上海海洋大学学报. 2024(06): 1429-1438 . 百度学术
    6. 李志坚,张永琪,吴迪,孟雄栋,李延天,张丽珍. 基于改进YOLOv7-tiny的凡纳滨对虾游动活跃性定量检测方法. 水产学报. 2024(12): 85-96 . 百度学术
    7. 文永婷,翁朝红,谢仰杰,高秀菊. 个体大小和性别及底质对红螯螯虾打斗行为的影响. 集美大学学报(自然科学版). 2023(01): 10-19 . 百度学术
    8. 应紫薇,李银康,颉晓勇. 中华鲎(Tachypleus tridentatus)稚鲎对不同比例泥沙类型选择行为特征. 海洋与湖沼. 2022(05): 1242-1249 . 百度学术
    9. 李晓莉,朱永久,杨德国,吴兴兵,李学梅,朱挺兵,孟子豪. 大规格大鳍鳠对隐蔽所的选择及其行为特征. 中国水产科学. 2022(12): 1768-1777 . 百度学术

    其他类型引用(5)

图(2)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 14
出版历程
  • 收稿日期:  2019-01-16
  • 修回日期:  2020-03-03
  • 网络出版日期:  2021-07-15
  • 发布日期:  2021-09-08

目录

    /

    返回文章
    返回