长江鲟org基因的克隆和表达分析

叶欢, 武梦斌, 危起伟, 岳华梅, 阮瑞, 杜浩, 冷小茜, 李创举

叶欢, 武梦斌, 危起伟, 岳华梅, 阮瑞, 杜浩, 冷小茜, 李创举. 长江鲟org基因的克隆和表达分析[J]. 水生生物学报, 2021, 45(5): 958-965. DOI: 10.7541/2021.2020.108
引用本文: 叶欢, 武梦斌, 危起伟, 岳华梅, 阮瑞, 杜浩, 冷小茜, 李创举. 长江鲟org基因的克隆和表达分析[J]. 水生生物学报, 2021, 45(5): 958-965. DOI: 10.7541/2021.2020.108
YE Huan, WU Meng-Bin, WEI Qi-Wei, YUE Hua-Mei, RUAN Rui, DU Hao, LENG Xiao-Qian, LI Chuang-Ju. ClONE AND EXPRESSION ANALYSIS OF ORG GENE IN YANGTZE STURGEON (ACIPENSER DABRYANUS)[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 958-965. DOI: 10.7541/2021.2020.108
Citation: YE Huan, WU Meng-Bin, WEI Qi-Wei, YUE Hua-Mei, RUAN Rui, DU Hao, LENG Xiao-Qian, LI Chuang-Ju. ClONE AND EXPRESSION ANALYSIS OF ORG GENE IN YANGTZE STURGEON (ACIPENSER DABRYANUS)[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 958-965. DOI: 10.7541/2021.2020.108

长江鲟org基因的克隆和表达分析

基金项目: 中国水产科学研究院基本科研业务费(2018JBF10和2019GH12)资助; 国家自然科学基金(31902353)资助
详细信息
    作者简介:

    叶欢(1985—), 男, 助理研究员; 主要从事鱼类生殖发育研究。E-mail: yehuan@yfi.ac.cn

    通信作者:

    李创举, 研究员; E-mail: lcj@yfi.ac.cn

  • 中图分类号: Q344+.1

ClONE AND EXPRESSION ANALYSIS OF ORG GENE IN YANGTZE STURGEON (ACIPENSER DABRYANUS)

Funds: Supported by the Central Public-interest Scientific Institution Basal Research Fund, CAFS (2018JBF10 and 2019GH12); National Natural Science Foundation of China (31902353)
    Corresponding author:
  • 摘要: 为了研究卵子发生相关基因org基因在长江鲟(Acipenser dabryanus)卵子发生过程的作用, 克隆得到长江鲟org基因(命名为Adorg)的全长cDNA序列, 该序列为1031 bp, 编码233个氨基酸。氨基酸序列比对分析发现, 长江鲟AdOrg与斑马鱼(Danio rerio)ZOrg蛋白序列的一致性最高, 为49.5 %。荧光定量PCR研究发现, 长江鲟Adorg mRNA特异地表达于性腺, 其在卵巢大量表达, 在精巢微量表达, 而在其他组织(肝、肠、脾、肾、心、肌肉、鳃、垂体和下丘脑)均未检测到其表达; 胚胎发育过程的动态表达分析表明, Adorg为母源表达, 在原肠胚之前均具有较高的表达水平, 随后其表达量急剧下降; 进一步研究其在卵子发生的表达模式, 发现Adorg基因在未分化性腺中的表达量极低, 随着卵母细胞的生长发育, 其mRNA表达水平急剧上升, 且维持在非常高的水平, 在Ⅱ期卵巢中的表达量最高。性腺切片RNA原位杂交实验结果表明, Adorg特异地在生殖细胞表达; 在卵巢中, Adorg在卵原细胞的信号较弱, 但在初级卵母细胞中, 其信号急剧增强且分布在卵母细胞的胞质, 且随着初级卵母细胞的生长发育, 其信号也逐渐增强; 在精巢中, 发现Adorg mRNA在A型和B型精原细胞中表达, 而在初级和次级精母细胞中未发现阳性信号。上述结果表明, Adorg基因可能在长江鲟性别分化和卵子发生过程中都起重要作用, 有待通过基因敲降或敲除技术来进一步阐明其功能。
    Abstract: Yangtze sturgeon, Acipenser dabryanus, is a freshwater fish that mainly distributed in the upper reaches of Yangtze River and its tributaries. Male and female Yangtze sturgeons in the wild reach sexual maturity at 4—6 and 6—8 years, respectively. Currently, it is a critically endangered species due to overfishing, habitat degradation and pollution. In order to protect and restore this species, many efforts have been made, such as building nature reserves and fishery stock enhancement and releasing. However, the wild population of Yangtze sturgeon has sharply decreased, and it is hardly observed in the Yangtze River now. Previous studies, such as diet supplemented with exogenous hormone and juveniles injected with peptide, were performed to short its sexual maturation time, but no effect has been observed. The oogenesis-related gene, org, plays an important role in the growth and development of oocytes in teleost fish. In order to reveal its function during the oogenesis of Yangtze sturgeon, a full-length cDNA of an org homologue was isolated (designated as Adorg), which was 1031 bp, encoding 233 amino acids. Multiple sequence alignments showed that AdOrg shared the highest sequence identity (49.5%) with zebrafish. By quantitative real-time PCR analysis, Adorg mRNA was specifically transcribed in the gonad, abundant in the ovary and weak in the testis. Transcription of Adorg was not detected in other somatic tissues including liver, intestine, spleen, kidney, heart, muscle, gill, pituitary and hypothalamus. During embryogenesis, Adorg was proved to be maternally transcribed, maintaining a high level before the gastrula stage, and then declining dramatically in later developmental stages. The transcription of Adorg was very limited in undifferentiated gonads, but it sharply increased in the following process of oogenesis, with its highest expression in stage Ⅱ oocytes. In situ hybridization of gonad indicated that the signal of Adorg mRNA was specifically located in the germ cells. In the ovary, Adorg signal was weak in the oogonia, and it increased rapidly in the cytoplasm of primary oocytes, and became stronger with the development of oocytes. In the testes, the expression of Adorg was restricted to type A and B spermatogonia, and was barely detectable in spermatocytes. These findings suggested that Adorg gene might play vital roles not only in oogenesis, but also in development and differentiation of germ cells. Knock-down or knock-out of this gene is necessary for exploring its specific function. These results paved the way for understanding the function of Adorg gene in Yangtze sturgeon during oogenesis.
  • 图  1   长江鲟AdOrg与其他鱼类Org蛋白序列比对

    Figure  1.   Protein sequence alignment of Yangtze sturgeon AdOrg with that of other fish homologues

    图  2   长江鲟Adorg基因在成鱼不同组织的表达水平

    Figure  2.   The expression of Adorg gene in different adult tissues of Yangtze sturgeon

    图  3   长江鲟不同发育时期性腺的组织学特征

    A. 未分化的性腺; B. Ⅰ期卵巢; C. Ⅱ期卵巢; D. Ⅲ期卵巢; E. Ⅳ期卵巢; F. Ⅱ期精巢; G. 性腺; Og. 卵原细胞; SG. 精原细胞; PSP, 初级精母细胞

    Figure  3.   Histological characteristics of different stages of Yangtze sturgeon gonads

    A. undifferentiated gonad; B. ovary at the stage I; C. ovary at the stage Ⅱ; D. ovary at the stage Ⅲ; E. ovary at the stage Ⅳ; F. testis at the stage Ⅱ; G. gonad; Og. oogonia; SG. spermatogonia; PSP. primary spermatocytes

    图  4   长江鲟Adorg基因在未受精卵和不同发育时期胚胎的表达量

    Figure  4.   Expression levels of Adorg in unfertilized eggs and different development stages of Yangtze sturgeon embryos

    图  5   长江鲟Adorg基因在卵子发生过程中的表达量变化

    Figure  5.   Expression variation of Adorg gene during oogenesis

    图  6   Adorg基因在长江鲟卵巢和精巢的细胞定位

    A. Adorg mRNA在卵巢的细胞定位; B. Adorg mRNA在精巢的细胞定位; C. 正义探针在卵巢中没有信号; D. 正义探针在精巢中没有信号; Og. 卵原细胞; SG. 精原细胞; PSP. 初级精母细胞; SSP. 次级精母细胞

    Figure  6.   Cellular localization of Adorg gene in the ovary and testis of Yangtze sturgeon

    A. localization of Adorg mRNA in the ovary; B. localization of Adorg mRNA in the testis; C. signal of sense probe of Adorg mRNA in the ovary; D. signal of sense probe of Adorg mRNA in the testis. Og. oogonia; SG. spermatogonia; PSP. primary spermatocytes; SSP. secondary spermatocytes

    表  1   本研究所用引物

    Table  1   Primers used in this study

    引物名称Primer序列
    Sequence (5′—3′)
    用途
    Usage
    Adorg-3gsp1GTGACAGCGAGGAGAACAGGACTC3′RACE-PCR
    Adorg-3gsp2ACTCAGAGCAGCAATCGTGATCC3′RACE-PCR
    Adorg-5gsp1TCGCTGCTCGGCTCGTAAGTGGGA5′RACE-PCR
    Adorg-5gsp2GGACAGGGTAGCCGAGCGCACTCT5′RACE-PCR
    UPMCTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAG和CTAATACGACTCACTATAGGGCRACE通用引物
    NUPAAGCAGTGGTATCAACGCAGAGTRACE通用引物
    Adorg-qFCTGGGAAGGGTAACAAGCGTAAAC荧光定量PCR
    Adorg-qRCCTCTTCTGCCACCTCCTCTATG荧光定量PCR
    Adorg-anti-FTGAGAAGCCGCCAGTTGTTG原位杂交反义探针
    Adorg-anti-RTAATACGACTCACTATAGGGCTGAGGCGTAATCTGTAAAACTTG原位杂交反义探针
    Adorg-sense-FTAATACGACTCACTATAGGGTGAGAAGCCGCCAGTTGTTG原位杂交正义探针
    Adorg-sense-RCTGAGGCGTAATCTGTAAAACTTG原位杂交正义探针
    下载: 导出CSV
  • [1]

    Lubzens E, Young G, Bobe J, et al. Oogenesis in teleosts: how fish eggs are formed [J]. General and Comparative Endocrinology, 2010, 165(3): 367-389. doi: 10.1016/j.ygcen.2009.05.022

    [2]

    Urbatzka R, Rocha M J, Rocha E. Regulation of ovarian development and function in teleosts [M]. Hormones and Reproduction of Vertebrates. London: Academic Press, 2011: 65-82.

    [3]

    Dranow D B, Hu K, Bird A M, et al. Bmp15 is an oocyte-produced signal required for maintenance of the adult female sexual phenotype in zebrafish [J]. PLoS Genetics, 2016, 12(9): e1006323. doi: 10.1371/journal.pgen.1006323

    [4]

    Liu L, Ge W. Growth differentiation factor 9 and its spatiotemporal expression and regulation in the zebrafish ovary [J]. Biology of Reproduction, 2007, 76(2): 294-302. doi: 10.1095/biolreprod.106.054668

    [5]

    Halm S, Ibañez A J, Tyler C R, et al. Molecular characterisation of growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) and their patterns of gene expression during the ovarian reproductive cycle in the European sea bass [J]. Molecular and Cellular Endocrinology, 2008, 291(1): 95-103.

    [6]

    Kanamori A, Toyama K, Kitagawa S, et al. Comparative genomics approach to the expression of figα, one of the earliest marker genes of oocyte differentiation in medaka (Oryzias latipes) [J]. Gene, 2008, 423(2): 180-187. doi: 10.1016/j.gene.2008.07.007

    [7]

    Qiu Y, Sun S, Charkraborty T, et al. Figla favors ovarian differentiation by antagonizing spermatogenesis in a teleosts, Nile Tilapia (Oreochromis niloticus) [J]. PLoS One, 2015, 10(4): e0123900. doi: 10.1371/journal.pone.0123900

    [8]

    Nakamoto M, Matsuda M, Wang D S, et al. Molecular cloning and analysis of gonadal expression of Foxl2 in the medaka, Oryzias latipes [J]. Biochemical and Biophysical Research Communications, 2006, 344(1): 353-361. doi: 10.1016/j.bbrc.2006.03.137

    [9]

    Zhang X, Li M, Ma H, et al. Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX nile tilapia [J]. Endocrinology, 2017, 158(8): 2634-2647.

    [10] 周运迪, 吴星星, 赵海萍, 等. 青鳉 foxl2基因敲除突变体的构建与表型分析 [J]. 广东海洋大学学报, 2019, 39(2): 20-30.

    Zhou Y D, Wu X X, Zhao H P, et al. Generation and phenotype analysis on foxl2 mutant in medaka, Oryzias latipes [J]. Journal of Guangdong Ocean University, 2019, 39(2): 20-30.

    [11]

    Babin P J, Carnevali O, Lubzens E, et al. Molecular Aspects of Oocyte Vitellogenesis in Fish [M]. The Fish Oocyte: From Basic Studies to Biotechnological Applications. Dordrecht: Springer Netherlands, 2007: 39-76.

    [12]

    Dai L, Ma W, Li J, et al. Cloning and characterization of a novel oocyte-specific gene zorg in zebrafish [J]. Theriogenology, 2009, 71(3): 441-449. doi: 10.1016/j.theriogenology.2008.07.028

    [13]

    Wang L, Tripurani S K, Wanna W, et al. Cloning and characterization of a novel oocyte-specific gene encoding an F-Box protein in rainbow trout (Oncorhynchus mykiss) [J]. Reproductive Biology and Endocrinology, 2013, 11(1): 86. doi: 10.1186/1477-7827-11-86

    [14]

    Wu J M, Wei Q W, Du H, et al. Initial evaluation of the release programme for Dabry’s sturgeon (Acipenser dabryanus Duméril, 1868) in the upper Yangtze River [J]. Journal of Applied Ichthyology, 2014, 30(6): 1423-1427. doi: 10.1111/jai.12597

    [15] 龚全, 刘亚, 杜军, 等. 达氏鲟全人工繁殖技术研究 [J]. 西南农业学报, 2013, 26(4): 1710-1714. doi: 10.3969/j.issn.1001-4829.2013.04.083

    Gong Q, Liu Y, Du J, et al. Study on artificial reproduction of cultured Acipenser dabryanus Dumeril [J]. Southwest China Journal of Agricultural Sciences, 2013, 26(4): 1710-1714. doi: 10.3969/j.issn.1001-4829.2013.04.083

    [16] 杜浩, 罗江, 周亮, 等. 长江鲟子三代繁育技术研究 [J]. 四川动物, 2020, 39(2): 197-203.

    Du H, Luo J, Zhou L, et al. Technologies for reproduction of the third generation of Acipenser dabryanus in captive [J]. Sichuan Journal of Zoology, 2020, 39(2): 197-203.

    [17]

    Du H, Wei Q W, Xie X, et al. Improving swimming capacity of juvenile Dabry’s sturgeon, (Acipenser dabryanus Duméril, 1869) in current-enriched culture tanks [J]. Journal of Applied Ichthyology, 2014, 30(6): 1445-1450. doi: 10.1111/jai.12591

    [18] 张磊, 危起伟, 张书环, 等. 饲料蛋白水平对达氏鲟幼鱼生长性能、体组成、消化酶活性以及血液生化指标的影响 [J]. 淡水渔业, 2016, 46(6): 79-85. doi: 10.3969/j.issn.1000-6907.2016.06.014

    Zhang L, Wei Q W, Zhang S H, et al. Effects of dietary protein level on growth performance, body composition, digestive enzyme activities and blood biochemical parameters of juvenile Acipenser dabryanus [J]. Freshwater Fisheries, 2016, 46(6): 79-85. doi: 10.3969/j.issn.1000-6907.2016.06.014

    [19] 褚志鹏, 危起伟, 杜浩, 等. 不同糖源对达氏鲟幼鱼生长、体成分及生理生化指标的影响 [J]. 中国水产科学, 2017, 24(2): 284-294. doi: 10.3724/SP.J.1118.2017.16265

    Chu Z P, Wei Q W, Du H, et al. Effects of different carbohydrate sources on growth performance, body composition, and physiological and biochemical parameters of juvenile Dabry’s sturgeon (Acipenser dabryanus) [J]. Journal of Fishery Sciences of China, 2017, 24(2): 284-294. doi: 10.3724/SP.J.1118.2017.16265

    [20]

    Di J, Chu Z, Zhang S, et al. Evaluation of the potential probiotic Bacillus subtilis isolated from two ancient sturgeons on growth performance, serum immunity and disease resistance of Acipenser dabryanus [J]. Fish & Shellfish Immunology, 2019(93): 711-719.

    [21]

    Huang J, Zhang S H, Di J, et al. Inactivated Mycobacterium vaccine induces innate immunity against M. ulcerans ecovar Liflandii (MuLiflandii ASM001) infection in Dabry′s sturgeon (Acipenser dabryanus) [J]. Aquaculture, 2019(512): 734312.

    [22]

    Zhuang P, Ke F, Wei Q, et al. Biology and life history of Dabry’s sturgeon, Acipenser dabryanus, in the Yangtze River [J]. Environmental Biology of Fishes, 1997(48): 257-264.

    [23] 李创举, 单喜双, 岳华梅, 等. GH重组蛋白对达氏鲟生长、血液生化和体组成的影响 [J]. 水生生物学报, 2016, 40(6): 1106-1113. doi: 10.7541/2016.143

    Li C J, Shan X S, Yue H M, et al. Effects of recombinant GH on growth, blood biochemistry and body composition of juvenile Dabry’s sturgeon Acipenser dabryanus [J]. Acta Hydrobiologica Sinica, 2016, 40(6): 1106-1113. doi: 10.7541/2016.143

    [24] 岳华梅, 叶欢, 阮瑞, 等. 达氏鲟gpr54基因的克隆及Kisspeptin注射对其表达的影响 [J]. 水生生物学报, 2018, 42(5): 896-902. doi: 10.7541/2018.110

    Yue H M, Ye H, Ruan R, et al. Molecular cloning of gpr54 genes and effects of kisspeptin intraperitoneal injection on its expression in Acipenser dabryanus [J]. Acta Hydrobiologica Sinica, 2018, 42(5): 896-902. doi: 10.7541/2018.110

    [25] 武梦斌, 叶欢, 岳华梅, 等. 达氏鲟实时荧光定量PCR内参基因的筛选 [J]. 中国水产科学, 2020, 27(7): 759-770.

    Wu M B, Ye H, Yue H M, et al. Identification of the reference genes for qRT-PCR in Dabry’s sturgeon, Acipenser dabryanus [J]. Journal of Fishery Sciences of China, 2020, 27(7): 759-770.

    [26]

    Ye H, Li C J, Yue H M, et al. Differential expression of fertility genes boule and dazl in Chinese sturgeon (Acipenser sinensis), a basal fish [J]. Cell and Tissue Research, 2015, 360(2): 413-425. doi: 10.1007/s00441-014-2095-2

    [27]

    Ye H, Li C J, Yue H M, et al. Establishment of intraperitoneal germ cell transplantation for critically endangered Chinese sturgeon Acipenser sinensis [J]. Theriogenology, 2017(94): 37-47.

    [28]

    Yang X, Yue H, Ye H, et al. Identification of a germ cell marker gene, the dead end homologue, in Chinese sturgeon Acipenser sinensis [J]. Gene, 2015, 558(1): 118-125. doi: 10.1016/j.gene.2014.12.059

    [29]

    Hochleithner M, Gessner J. The Sturgeons and Paddlefishes of the World: Biology and Aquaculture [M]. Demand: AquaTech Publications, 2012: 120-126.

    [30]

    Howley C, Ho R K. mRNA localization patterns in zebrafish oocytes [J]. Mechanisms of Development, 2000, 92(2): 305-309. doi: 10.1016/S0925-4773(00)00247-1

图(6)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-11
  • 修回日期:  2020-09-13
  • 网络出版日期:  2021-07-01
  • 发布日期:  2021-09-08

目录

    /

    返回文章
    返回