八肋游仆虫微管蛋白基因家族的鉴定及进化分析

王软林, 肖羽, 李佳, 梁爱华

王软林, 肖羽, 李佳, 梁爱华. 八肋游仆虫微管蛋白基因家族的鉴定及进化分析[J]. 水生生物学报, 2021, 45(5): 1005-1013. DOI: 10.7541/2021.2020.150
引用本文: 王软林, 肖羽, 李佳, 梁爱华. 八肋游仆虫微管蛋白基因家族的鉴定及进化分析[J]. 水生生物学报, 2021, 45(5): 1005-1013. DOI: 10.7541/2021.2020.150
WANG Ruan-Lin, XIAO Yu, LI Jia, LIANG Ai-Hua. IDENTIFICATION AND EVOLUTION ANALYSIS OF TUBULIN SUPERFAMILY GENES IN EUPLOTES OCTOCARINATUS[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1005-1013. DOI: 10.7541/2021.2020.150
Citation: WANG Ruan-Lin, XIAO Yu, LI Jia, LIANG Ai-Hua. IDENTIFICATION AND EVOLUTION ANALYSIS OF TUBULIN SUPERFAMILY GENES IN EUPLOTES OCTOCARINATUS[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1005-1013. DOI: 10.7541/2021.2020.150

八肋游仆虫微管蛋白基因家族的鉴定及进化分析

基金项目: 国家自然科学基金(31801965和31372199); 山西省自然科学基金(201801D221246)资助
详细信息
    作者简介:

    王软林(1989—), 男, 副教授, 博士; 主要研究方向为原生动物分子生物学。E-mail: rlwang@sxu.edu.cn

    通信作者:

    梁爱华(1957—), 女, 教授, 博士; 主要研究方向为分子生物学。E-mail: aliang@sxu.edu.cn

  • 中图分类号: Q344+.1

IDENTIFICATION AND EVOLUTION ANALYSIS OF TUBULIN SUPERFAMILY GENES IN EUPLOTES OCTOCARINATUS

Funds: Supported by the National Natural Science Foundation of China (31801965 and 31372199); Shanxi Province Science Foundation for Youths (201801D221246)
    Corresponding author:
  • 摘要: 为了系统分析八肋游仆虫(Euplotes octocarinatus)微管蛋白基因家族, 从八肋游仆虫大核基因组中共鉴定得到20个微管蛋白基因, 基于同源比对及系统进化分析, 将其归入α、β、γ、δ、ε及η六个微管蛋白亚家族; 多序列比对及Western blot结果显示八肋游仆虫η微管蛋白基因在翻译过程中需发生一次+1位编程性核糖体移码, 其移码位点为AAA-TAA; 所有自由生纤毛虫都含有多个α和β微管蛋白基因亚型, 可能用于组成不同的微管结构。研究为后续深入探讨八肋游仆虫微管蛋白的生物学功能及微管多样性奠定了基础。
    Abstract: Microtubules represent one of the major cytoskeletal filament systems of all eukaryotic cells. They play a key role in spatial arrangement of the organelles, intracellular transport, nuclear and cell division, and ciliar motility. Ciliates are ideal model organisms for studying the functional diversity of tubulins. Here, a total of 20 tubulin genes were identified in the macronuclear genome of the ciliate Euplotes octocarinatus. Based on ortholog comparisons and phylogenetic analysis, these genes were clustered into six groups: α-, β-, γ-, δ-, ε- and η-tubulins. Sequence analysis and western blots suggested that the η-tubulin gene of E. octocarinatus required a +1 programmed ribosomal frameshifting to produce complete protein product. The slippery sequence is AAATAAT. We further systematically identified tubulin genes from 9 other ciliates and compared them with E. octocarinatus. The α- and β-tubulins of all investigated free-living ciliates are encoded by multigene families, and each tubulin isotype may be used to form distinct tubulin structures. Phylogenetic analysis showed that α- and β-tubulin genes underwent multiple independent duplications and losses in ciliate. Our study lays a foundation for studying the biological function of tubulins and exploring the mechanisms of microtubule diversity.
  • 图  1   八肋游仆虫微管蛋白基因家族序列分析

    用八肋游仆虫(Eo, 粗体)、嗜热四膜虫(Tt)及第四双小核草履虫(Pt)的微管蛋白构建的最大似然树, 大肠杆菌的FtsZ蛋白作为外类群。自展值以百分比的形式列于每一个节点

    Figure  1.   Sequence analysis of the tubulin gene families from Euplotes octocarinatus

    The maximum likelihood phylogenetic tree based on the deduced amino acid sequences of tubulin genes in Euplotes octocarinatus (Eo, in bold), Tetrahymena thermophila (Tt) and Paramecium tetraurelia (Pt). The FtsZ protein of Escherichia coli (Ec) was used as outgroup. Bootstrap values are displayed as percentages at each tree node

    图  2   八肋游仆虫微管蛋白基因微染色体的结构示意图

    椭圆代表微染色体的端粒, 黑色方框表示外显子, 内含子的长度标在上方

    Figure  2.   Schematic representation of the Eo-tubulin nanochromosomes structure

    The ellipses indicated the telomeres of the nanochromosomes. The black rectangles represented the exon. The length of the intron was listed above the line

    图  3   八肋游仆虫η微管蛋白基因的表达需要编程性核糖体移码

    A. 移码区域的详细分析。标出了Eoη-tub基因的起始密码子和终止密码子的位置, 不同起始密码子和终止密码子组合相对应的三个开放阅读框。假定的滑动序列AAAUAAU用浅色字体表示, 理论上0读框和+1读框翻译的氨基酸序列分别列于mRNA序列的上方和下方, ORF表示开放阅读框(Open reading frame); B. 八肋游仆虫η微管蛋白移码位点附近的氨基酸序列与Paramecium tetraurelia (Pt)、Euplotes focardii (Ef) 及Euplotes crassus (Ec)同源蛋白的比对, 推测的移码位点用黑色圆点表示; C. 利用制备的Eoη-tub多克隆抗体进行western blot分析, 泳道1和2分别表示用和不用抗原多肽孵育得到的结果。箭头所指为Eoη-tub的位置, Eoα-tub作为内参, Mr代表蛋白Marker

    Figure  3.   Programmed ribosomal frameshifting is likely required for expression of gene encoding η-tubulin in Euplotes octocarinatus

    A. Close-up of the frameshift region. Relative positions of the multiple start and stop codons in the Eoη-tub gene sequence were shown. The putative slippery sequence AAAUAAU motif is shown in light type. Conceptual translations in the 0 reading frame and +1 reading frame are aligned above and below the mRNA sequence, respectively. ORF, open reading frame. B. The parts of the putative frameshift site of the η-tubulin of E. octocarinatus (Eo) are aligned with the respective homologous proteins from P. tetraurelia (Pt), E. focardii (Ef) and E. crassus (Ec). The putative location of the frameshift is marked by black dot. C. Western blot of total cell lysates probed with Eoη-tub antibody in absence, or presence of the relative antigenic peptide (lanes 1 and 2, respectively). The Eoη-tub recognition is indicated by arrowhead. Eoα-tub is used as the internal control, Mr represents protein Marker

    图  4   八肋游仆虫与其他纤毛虫中微管蛋白基因的比较

    系统发育树是利用不同物种的18S rRNA序列采用最大似然法构建的, 以人作为外群。自展值以百分比的形式列于每一个节点, 每个微管蛋白亚家族的基因个数列在右边

    Figure  4.   Comparison of tubulin genes in Euplotes octocarinatus and other ciliates

    Phylogenetic tree was constructed using the maximum likelihood method based on the 18S rRNA sequences. Homo sapiens is an outgroup. Bootstrap values are displayed as percentages at each tree node. The gene number of each tubulin subfamily was indicated on the right

    图  5   纤毛虫α及β微管蛋白亚家族系统发育分析

    基于不同纤毛虫α(A)及β(B)微管蛋白亚家族序列构建的最大似然树, 大肠杆菌的FtsZ蛋白作为外类群, 自展值以百分比的形式列于每一个节点。Pt. 第四双小核草履虫; Tt. 嗜热四膜虫; Pp. 水滴伪康纤虫; Im. 多子小瓜虫; Sc. 天蓝喇叭虫; Ot. 三棱尖毛虫; Sl. 浮萍棘尾虫; Ec. 厚游仆虫; Ef. 嗜冷游仆虫; Eo. 八肋游仆虫

    Figure  5.   Phylogenetic analysis of α and β tubulin subfamilies in ciliates

    Phylogenetic tree was constructed using the maximum likelihood method based on the deduced amino acid sequences of α tubulin subfamilies sequences (A) and β tubulin subfamilies sequences (B) from different ciliates. The FtsZ protein of Escherichia coli was used as outgroup. Bootstrap values are displayed as percentages at each tree node. Pt. Paramecium tetraurelia; Tt. Tetrahymena thermophile; Pp. Pseudocohnilembus persalinus; Im. Ichthyophthirius multifiliis; Sc. Stentor coeruleus; Ot. Oxytricha trifallax; Sl. Stylonychia lemnae; Ec. Euplotes crassus; Eh. Euplotes harpa; Eo. Euplotes octocarinatus

    表  1   八肋游仆虫微管蛋白基因的分子特征

    Table  1   Molecular characteristics of the tubulin genes in Euplotes octocarinatus

    基因/亚家族
    Gene/Subfamily
    基因组ID
    Genome ID
    内含子个数Introns number5′前导序列长度
    5′ leader (bp)
    3′尾端序列长度
    3′ tailer (bp)
    RPKM值RPKM value氨基酸长度Length (aa)分子量Molecular weight (kD)
    α-tubulin
    Eoα-tubContig18065078992601.6645049.62
    Eoα-tub-like-1Contig28852051710.2244550.73
    Eoα-tub-like-2Contig27230040311.9148355.97
    Eoα-tub-like-3Contig3451057331.5445951.62
    Eoα-tub-like-4Contig2715803846/45651.56
    Eoα-tub-like-5Contig2686903857/45752.34
    β-tubulin
    Eoβ-tub1Contig5259050127231.9844449.63
    Eoβ-tub2Contig5984054511.1544449.60
    Eoβ-tub3Contig8213054143168.7744349.65
    Eoβ-tub4Contig4144198055143131.5744349.60
    Eoβ-tub-like-1Contig18362233442.1943549.87
    Eoβ-tub-like-2Contig25579531381.6945451.88
    Eoβ-tub-like-3Contig291234351011.7144450.90
    Eoβ-tub-like-4Contig644507979169.6646752.44
    Eoβ-tub-like-5Contig4144404141383.4243348.93
    Eoβ-tub-like-6Contig9575039411.0850558.35
    γ-tubulin
    Eoγ-tubContig110922498218.52846152.04
    δ-tubulin
    Eoδ-tubContig24288144131.0342348.54
    ε-tubulin
    Eoε-tubContig17307280363.9649956.51
    η-tubulin
    Eoη-tubContig8731234515.8941046.66
    下载: 导出CSV
  • [1]

    Aylett C H S, Löwe J, Amos L A. New insights into the mechanisms of cytomotive actin and tubulin filaments [J]. International Review of Cell and Molecular Biology, 2011(292): 1-71.

    [2]

    Oakley B R. An abundance of tubulins [J]. Trends in Cell Biology, 2000, 10(12): 537-542. doi: 10.1016/S0962-8924(00)01857-2

    [3]

    Mckean P G, Vaughan S, Gull K. The extended tubulin superfamily [J]. Journal of Cell Science, 2001, 114(15): 2723-2733. doi: 10.1242/jcs.114.15.2723

    [4]

    Dutcher S K, Trabuco E C. The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes delta-tubulin, a new member of the tubulin superfamily [J]. Molecular Biology of the Cell, 1998, 9(6): 1293-1308. doi: 10.1091/mbc.9.6.1293

    [5]

    Ruiz F, Krzywicka A, Klotz C, et al. The SM19 gene, required for duplication of basal bodies in Paramecium, encodes a novel tubulin, eta-tubulin [J]. Current Biology, 2000, 10(22): 1451-1454. doi: 10.1016/S0960-9822(00)00804-6

    [6]

    Chang P, Stearns T. Delta-tubulin and epsilon-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function [J]. Nature Cell Biology, 2000, 2(1): 30-35. doi: 10.1038/71350

    [7]

    Findeisen P, Muhlhausen S, Dempewolf S, et al. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family [J]. Genome Biology and Evolution, 2014, 6(9): 2274-2288. doi: 10.1093/gbe/evu187

    [8]

    Zhao Z T, Liu H Q, Luo Y P, et al. Molecular evolution and functional divergence of tubulin superfamily in the fungal tree of life [J]. Scientific Reports, 2014(4): 6746.

    [9]

    Libusova L, Draber P. Multiple tubulin forms in ciliated protozoan Tetrahymena and Paramecium species [J]. Protoplasma, 2006, 227(2-4): 65-76. doi: 10.1007/s00709-005-0152-0

    [10]

    Bayless B A, Navarro F M, Winey M. Motile cilia: innovation and insight from ciliate model organisms [J]. Frontiers in Cell Developmental Biology, 2019(7): 265.

    [11]

    Méndez-Sánchez D, Mayén-Estrada R, Hu X Z. Euplotes octocarinatus Carter, 1972 (Ciliophora, Spirotrichea, Euplotidae): Considerations on its morphology, phylogeny, and biogeography [J]. European Journal of Protistology, 2020(74): 125667.

    [12]

    Wang R L, Xiong J, Wang W, et al. High frequency of +1 programmed ribosomal frameshifting in Euplotes octocarinatus [J]. Scientific Reports, 2016, 6(1): 21139. doi: 10.1038/srep21139

    [13]

    Wang R L, Miao W, Wang W, et al. EOGD: the Euplotes octocarinatus genome database [J]. BMC Genomics, 2018, 19(1): 63. doi: 10.1186/s12864-018-4445-z

    [14]

    Wang R L, Zhang Z Y, Du J, et al. Large-scale mass spectrometry-based analysis of Euplotes octocarinatus supports the high frequency of +1 programmed ribosomal frameshift [J]. Scientific Reports, 2016, 6(1): 33020. doi: 10.1038/srep33020

    [15]

    Lobanov A V, Heaphy S M, Turanov A A, et al. Position-dependent termination and widespread obligatory frameshifting in Euplotes translation [J]. Nature Structural & Molecular Biology, 2016, 24(1): 61-68.

    [16]

    Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739. doi: 10.1093/molbev/msr121

    [17]

    Rice P, Longden I, Bleasby A. EMBOSS: The European molecular biology open software suite [J]. Trends in Genetics, 2000, 16(6): 276-277. doi: 10.1016/S0168-9525(00)02024-2

    [18]

    Fábio M, Young M P, Joon L, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019 [J]. Nucleic Acids Research, 2019, 47(W1): W636-W641. doi: 10.1093/nar/gkz268

    [19]

    Liang A H, Schmidt H J, Heckmann K. The alpha- and beta-tubulin genes of Euplotes octocarinatus [J]. Journal of Eukaryotic Microbiology, 1994, 41(2): 163-169. doi: 10.1111/j.1550-7408.1994.tb01490.x

    [20]

    EisenJ A, Coyne R S, Wu M, et al. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote [J]. PLoS Biology, 2006, 4(9): e286. doi: 10.1371/journal.pbio.0040286

    [21]

    Yi Z Z, Katz L A, Song W B. Assessing whether alpha-tubulin sequences are suitable for phylogenetic reconstruction of Ciliophora with insights into its evolution in euplotids [J]. PLoS One, 2012, 7(7): e40635. doi: 10.1371/journal.pone.0040635

    [22]

    Walker D M, Castlebury L A, Rossman A Y, et al. New molecular markers for fungal phylogenetics: two genes for species-level systematics in the Sordariomycetes (Ascomycota) [J]. Molecular Phylogenetics and Evolution, 2012, 64(3): 500-512. doi: 10.1016/j.ympev.2012.05.005

    [23]

    Turk E, Wills A A, Kwon T, et al. Zeta-tubulin is a member of a conserved tubulin module and is a component of the centriolar basal foot in multiciliated cells [J]. Current Biology, 2015, 25(16): 2177-2183. doi: 10.1016/j.cub.2015.06.063

    [24]

    Gull K. Protist tubulins: new arrivals, evolutionary relationships and insights to cytoskeletal function [J]. Current Opinion in Microbiology, 2001, 4(4): 427-432. doi: 10.1016/S1369-5274(00)00230-7

    [25]

    Aubusson-Fleury A, Bricheux G, Damaj R, et al. Epiplasmins and epiplasm in paramecium: the building of a submembraneous cytoskeleton [J]. Protist, 2013, 164(4): 451-469. doi: 10.1016/j.protis.2013.04.003

    [26]

    Ross I, Clarissa C, Giddings Jr T H, et al. ε-tubulin is essential in Tetrahymena thermophila for the assembly and stability of basal bodies [J]. Journal of Cell Science, 2013, 126(15): 3441-3451.

    [27]

    Luduena R F. Multiple forms of tubulin: different gene products and covalent modifications [J]. International Review of CytologyRossi, 1998(178): 207-275.

    [28] 柴宝峰, 王景涛, 梁爱华. 八肋游仆虫一个新β-微管蛋白基因的克隆与序列分析[J]. 山西大学学报(自然科学版), 2007, 30(2): 147-150.

    Chai B F, Wang J T, Liang A H. Cloning and sequence analysis of a novel β-tubulin gene from Euplotes octocarinatus[J]. Journal of Shanxi University (Natural Science Edition), 2007, 30(2): 147-150.

    [29]

    Tischfield M A, Engle E C. Distinct alpha- and beta-tubulin isotypes are required for the positioning, differentiation and survival of neurons: new support for the ‘multi-tubulin’ hypothesis [J]. Bioscience Reports, 2010, 30(5): 319-330. doi: 10.1042/BSR20100025

    [30]

    Nielsen M G, Gadagkar S R, Gutzwiller L. Tubulin evolution in insects: gene duplication and subfunctionalization provide specialized isoforms in a functionally constrained gene family [J]. BMC Evolutionary Biology, 2010(10): 113.

    [31]

    Pucciarelli S, Ballarini P, Sparvoli D, et al. Distinct functional roles of beta-tubulin isotypes in microtubule arrays of Tetrahymena thermophila, a model single-celled organism [J]. PLoS One, 2012, 7(6): e39694. doi: 10.1371/journal.pone.0039694

    [32]

    Baranov P V, Gesteland R F, Atkins J F. Release factor 2 frameshifting sites in different bacteria [J]. EMBO Reports, 2002, 3(4): 373-377. doi: 10.1093/embo-reports/kvf065

    [33]

    Ivanov I P, Atkins J F. Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation [J]. Nucleic Acids Research, 2007, 35(6): 1842-1858. doi: 10.1093/nar/gkm035

  • 期刊类型引用(5)

    1. 李小鹏, 王卿惠, 王世伟, 唐海平, 曹玉凯. 动物Trypsin基因结构、表达及应用研究进展. 高师理科学刊. 2017(10): 41-47+51 . 百度学术
    2. 郭俊峰, 尹琼, 高登慧. 鸡胚发育中消化器官类胰蛋白酶阳性细胞的观察. 中国家禽. 2016(13): 42-44 . 百度学术
    3. 李斌, 黄艳, 邵晨, 王宇. 铜离子急性胁迫对虎纹蛙肝脏中三羧酸循环及自由基代谢的影响. 水生生物学报. 2015(06): 1160-1168 . 本站查看
    4. 曹文芝, 刘云, 姜国良, 吴婷. 红鲫肥大细胞鉴别方法比较. 细胞与分子免疫学杂志. 2014(08): 872-874+877 . 百度学术
    5. 高登慧, 郭俊峰, 欧德渊, 姚红艳, 刘芳. 鸡胚发育中免疫器官肥大细胞类胰蛋白酶的研究. 细胞与分子免疫学杂志. 2013(10): 1009-1011 . 百度学术

    其他类型引用(6)

图(5)  /  表(1)
计量
  • 文章访问数:  1511
  • HTML全文浏览量:  582
  • PDF下载量:  77
  • 被引次数: 11
出版历程
  • 收稿日期:  2020-06-27
  • 修回日期:  2020-12-16
  • 网络出版日期:  2021-08-04
  • 发布日期:  2021-09-08

目录

    /

    返回文章
    返回