混合渔业视角下舟山渔场几种渔具管理策略对经济物种产量及生物群落影响评估

赵函磊, 王洋, 张畅, 王迎宾

赵函磊, 王洋, 张畅, 王迎宾. 混合渔业视角下舟山渔场几种渔具管理策略对经济物种产量及生物群落影响评估[J]. 水生生物学报, 2025, 49(4): 042514. DOI: 10.7541/2025.2024.0351
引用本文: 赵函磊, 王洋, 张畅, 王迎宾. 混合渔业视角下舟山渔场几种渔具管理策略对经济物种产量及生物群落影响评估[J]. 水生生物学报, 2025, 49(4): 042514. DOI: 10.7541/2025.2024.0351
ZHAO Han-Lei, WANG Yang, ZHANG Chang, WANG Ying-Bin. ASSESSMENT OF SEVERAL FISHING GEAR MANAGEMENT STRATEGIES ON ECONOMIC SPECIES YIELD AND BIOCOMMUNITY IN ZHOUSHAN FISHING GROUND FROM THE PERSPECTIVE OF MIXED FISHERIES[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042514. DOI: 10.7541/2025.2024.0351
Citation: ZHAO Han-Lei, WANG Yang, ZHANG Chang, WANG Ying-Bin. ASSESSMENT OF SEVERAL FISHING GEAR MANAGEMENT STRATEGIES ON ECONOMIC SPECIES YIELD AND BIOCOMMUNITY IN ZHOUSHAN FISHING GROUND FROM THE PERSPECTIVE OF MIXED FISHERIES[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042514. DOI: 10.7541/2025.2024.0351
赵函磊, 王洋, 张畅, 王迎宾. 混合渔业视角下舟山渔场几种渔具管理策略对经济物种产量及生物群落影响评估[J]. 水生生物学报, 2025, 49(4): 042514. CSTR: 32229.14.SSSWXB.2024.0351
引用本文: 赵函磊, 王洋, 张畅, 王迎宾. 混合渔业视角下舟山渔场几种渔具管理策略对经济物种产量及生物群落影响评估[J]. 水生生物学报, 2025, 49(4): 042514. CSTR: 32229.14.SSSWXB.2024.0351
ZHAO Han-Lei, WANG Yang, ZHANG Chang, WANG Ying-Bin. ASSESSMENT OF SEVERAL FISHING GEAR MANAGEMENT STRATEGIES ON ECONOMIC SPECIES YIELD AND BIOCOMMUNITY IN ZHOUSHAN FISHING GROUND FROM THE PERSPECTIVE OF MIXED FISHERIES[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042514. CSTR: 32229.14.SSSWXB.2024.0351
Citation: ZHAO Han-Lei, WANG Yang, ZHANG Chang, WANG Ying-Bin. ASSESSMENT OF SEVERAL FISHING GEAR MANAGEMENT STRATEGIES ON ECONOMIC SPECIES YIELD AND BIOCOMMUNITY IN ZHOUSHAN FISHING GROUND FROM THE PERSPECTIVE OF MIXED FISHERIES[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042514. CSTR: 32229.14.SSSWXB.2024.0351

混合渔业视角下舟山渔场几种渔具管理策略对经济物种产量及生物群落影响评估

基金项目: 舟山市科技局重点项目(2022C41003)资助
详细信息
    作者简介:

    赵函磊(1999—), 男, 硕士研究生; 主要从事海洋渔业生态可持续利用研究。E-mail: zhaohanlay@sina.com

    通信作者:

    王迎宾(1979—), 教授, 博士; 主要从事渔业资源评估与管理研究。E-mail: ybwang@zjou.edu.cn

  • 中图分类号: S937.3

ASSESSMENT OF SEVERAL FISHING GEAR MANAGEMENT STRATEGIES ON ECONOMIC SPECIES YIELD AND BIOCOMMUNITY IN ZHOUSHAN FISHING GROUND FROM THE PERSPECTIVE OF MIXED FISHERIES

Funds: Supported by the Key Project of Zhoushan Science and Technology Bureau (2022C41003)
    Corresponding author:
  • 摘要:

    为了探究混合渔业中不同捕捞渔具捕捞努力量变化对渔业活动经济效益及生态效益带来的潜在影响, 研究根据2022年在舟山渔场作业的4种渔船的渔捞日志数据, 构建舟山渔场质量谱模型(Size Spectrum Model, SSM), 评估了混合渔业中各作业方式捕捞变化对各物种产量、生物量和生物群落结构的影响。研究通过对13种渔具管理场景进行模拟, 分析不同场景下各物种产量的年际变化趋势, 并结合群落总生物量、大型鱼类指数、平均体重、平均最大体重和质量谱斜率5种群落生态指标监测群落对不同捕捞活动水平的响应。结果显示: (1)当拖网捕捞努力量下降时, 群落总生物量、平均体重及大型鱼类资源量明显上升, 银鲳(Pampus argenteus)、黑鮟鱇(Lophiomus setigerus)和大黄鱼(Larimichthys crocea)资源量有所回升, 黑鮟鱇和大黄鱼产量显著提高; (2)张网捕捞努力量下降会使群落总生物量有所上升, 海鳗(Muraenesox spp.)、棘头梅童(Collichthys lucidus)和带鱼(Trichiurus lepturus)资源量有所回升, 海鳗产量显著提高。相反, 当张网捕捞努力量上升时, 棘头梅童生物量资源及产量逐年下降; (3)当拖虾网捕捞努力量下降时, 总产量及群落总生物量有所下降, 管鞭虾(Solenocera spp.)和大黄鱼资源量有所回升。而当拖虾网捕捞努力量上升, 总产量及群落总生物量有所上升; (4)刺网捕捞努力量变化对于渔业产量、生物量及群落结构影响较小。研究结果对于保护舟山渔场各经济物种资源可持续利用及制定可行和更有效的渔业管理策略提供参考。

    Abstract:

    In order to explore the potential effects of different fishing gear and fishing efforts on the economic and ecological benefits of fishery activities in mixed fisheries, the Size Spectrum Model (SSM) was constructed based on the fishing log data from four types of vessels operating in the Zhoushan fishing ground in 2022. The study evaluated the effects of changes in fishing methods on the yield, biomass, and community structure of each species in the mixed fishery. Thirteen fishing gear management scenarios were simulated, and the interannual variation trends in species yield under different scenarios were analyzed. Additionally, community responses to different levels of fishing activity were monitored using five ecological indicators: total community biomass, large fish index, mean weight, mean maximum weight, and size spectrum slope. The results showed that: (1) When trawling effort decreased, the total biomass, average body weight, and large fish resources increased significantly, particularly for Pampus argenteus, Lophiomus setigerus, and Larimichthys crocea. The yield of Lophiomus setigerus and Larimichthys crocea also increased significantly. (2) The total biomass of the community increased with the decrease of stow net fishing effort, leading to the recovery of Muraenesox spp., Collichthys lucidus, and Trichiurus lepturus. The yield of Muraenesox spp. increased significantly. On the contrary, as net fishing effort increased, the biomass resources and yield of the plum child decreased year by year. (3) When the fishing effort of the shrimp net decreased, the total yield and total biomass of the community decreased, while the resources of Solenocera spp. and Larimichthys crocea increased. When the fishing effort of shrimp net increased, the total production and biomass of community increased. (4) The change in gillnet fishing effort had little effect on fishery yield, biomass, and community structure. The research results provide important insights for the sustainable use of economic species resources in the Zhoushan fishing ground, and they can help managers better understand the potential impact of changes in fishing effort of various fishing gear on fishery output and community ecology, so as to formulate feasible and more effective fishery management strategies according to the importance of species and the actual situation of fishing vessels.

  • 图  1   舟山渔场及捕捞作业渔区

    Figure  1.   Zhoushan fishing ground and fishing operation area

    图  2   质量谱模型平衡状态基本输出

    Figure  2.   Basic output of size spectrum model equilibrium state

    图  3   质量谱模型拟合效果图

    Figure  3.   Size spectrum model fitting effect diagram

    图  4   模拟场景下各生态指标变化情况

    Figure  4.   Changes of ecological indicators in simulated scenarios

    图  5   不同场景下各物种产量变化情况

    图A至图M分别对应表 2管理场景1至场景13, 黑色垂直虚线为管理策略实施年份

    Figure  5.   Yield changes of each species under different scenarios

    Fig. A to M correspond to management scenarios 1 to 13 in Tab. 2, respectively. The black vertical dashed lines indicate the implementation year of the management strategy

    图  6   不同场景下各物种生物量变化情况

    图A至图M分别对应表 2管理场景1至场景13; 黑色垂直虚线为管理策略实施年份

    Figure  6.   Biomass changes of each species under different scenarios

    Fig. A to M correspond to management scenarios 1 to 13 in Tab. 2, respectively; The black vertical dashed lines indicate the implementation year of the management strategy

    表  1   质量谱模型方程总结

    Table  1   Summary of equations in the multispecies size-spectrum model

    过程
    Process
    子过程(符号)
    Sub-process (symbol)
    方程
    Equation
    相遇及消耗
    Encounter and consumption
    摄食选择性Prey size selection ($ {\phi }_{} $) $ {\phi }_{i}\left(\dfrac{{w}_{p}}{w}\right)=\mathrm{e}\mathrm{x}\mathrm{p}\left[-{\left(\mathrm{l}\mathrm{n}\left(\dfrac{w}{{w}_{p}{\beta }_{i}}\right)\right)}^{2}/\left(2{\sigma }_{i}^{2}\right)\right] $ (1)
    食物相遇概率Encountered food (E) $ {E}_{i}\left(w\right)={V}_{i}\left(w\right)\sum _{i}{\theta }_{i}\int {N}_{i}\left(w\right)\varphi \left(\dfrac{{w}_{p}}{w}\right){w}_{p}\mathrm{d}{w}_{p} $ (2)
    体积搜索率Volumetric search rate (V) $ {V}_{i}\left(w\right)=\left[\dfrac{{f}_{0}h{\beta }^{2-\lambda }}{\left(1-{f}_{0}\right)\sqrt{2{\text{π}} }\kappa \sigma }\right]{w}^{q} $ (3)
    摄食水平 Feeding level (f) $ {f}_{i}\left(w\right)=\dfrac{{E}_{i}\left(w\right)}{{E}_{i}\left(w\right)+{I}_{\mathrm{m}\mathrm{a}\mathrm{x},i}\left(w\right)} $ (4)
    最大消耗速率Maximum consumption rate (I) $ {I}_{\mathrm{m}\mathrm{a}\mathrm{x},i}\left(w\right)=h{w}^{n} $ (5)
    生长及繁殖
    Growth and production
    生长Somatic growth ($ {g}_{i} $) $ {g}_{i}\left(w\right)=\left(\alpha {f}_{i}\left(w\right){I}_{\mathrm{m}\mathrm{a}\mathrm{x},i}\left(w\right)-{k}_{s}{w}^{p}\right)\left(1-{\psi }_{i}\left(w\right)\right) $ (6)
    繁殖能量Energy for reproduction ($ {g}_{r} $) $ {g}_{r}\left(w\right)=\left(\alpha f\left(w\right){I}_{\mathrm{m}\mathrm{a}\mathrm{x}}-{k}_{s}{w}^{p}\right)\psi \left(w\right) $ (7)
    成熟Maturation ($ {\psi }_{} $) $ {\psi }_{i}\left(w\right)={\left[1+{\left(\dfrac{w}{{w}_{\mathrm{m}\mathrm{a}\mathrm{t}}}\right)}^{-10}\right]}^{-1}{\left(\dfrac{w}{W}\right)}^{1-n} $ (8)
    补充量Recruitment ($ R $) $ {R}_{i}={R}_{\mathrm{m}\mathrm{a}\mathrm{x},i}\dfrac{{R}_{{\mathrm{ep}}}}{{R}_{{\mathrm{ep}}}+{R}_{\mathrm{m}\mathrm{a}\mathrm{x},i}} $ (9)
    产卵量Egg production ($ {R}_{{\mathrm{ep}}} $) $ {R}_{{\mathrm{ep}}}=\dfrac{\varepsilon}{2{w}_{0}}\int N\left(w\right){g}_{r}\left(w\right)\mathrm{d}w $ (10)
    死亡Mortality 被捕食死亡率Predation mortality ($ {\mu }_{{\mathrm{p}}} $) $ {\mu }_{p,\,i}\left(w\right)=\sum _{i}\int {\phi }_{i}\left(\dfrac{{w}_{{\mathrm{p}}}}{w}\right)\left(-{f}_{i}\left(w\right)\right){V}_{i}\left(w\right){\theta }_{i}{N}_{i}\left(w\right)\mathrm{d}w $ (11)
    捕捞死亡率Fishing mortality (F) $ {F}_{i}\left(w\right)={\mathrm{S}}{{\mathrm{S}}}_{i}\left(w\right){Q}_{i}E $ (12)
    背景死亡率Background mortality ($ {\mu }_{{\mathrm{b}}} $) $ {\mu }_{b,i}={Z}_{0}{w}^{n-1} $ (13)
    背景资源Background 背景承载力Carrying capacity (κ) $ {\textit{κ}} \left(w\right)={{\textit{κ}} }_{r}{w}^{-\lambda } $ (14)
    资源动态Resources dynamics $ \dfrac{\partial {N}_{r}\left(w\right)}{\partial t}={r}_{0}{w}^{n-1}\left[{\textit{κ}} \left(w\right)-{N}_{r}\left(w\right)\right]-{\mu }_{p,i}\left(w\right){N}_{r}\left(w\right) $ (15)
    注: 各式中i为物种; t为时间; w为重量, w0为后代重量; σ为选择宽度; SS为物种选择性大小; Q为捕捞能力; E为捕捞努力量; α为同化效率, 使用默认值0.6; f0为初始摄食水平; h为最大消耗常数, 使用默认值40 g1−n/year; ks为标准代谢系数, 使用默认值4 g1−p/year; ε为后代生产效率, 使用默认值1; n为最大消耗指数, 使用默认值2/3; q为体积搜索速率指数, 使用默认值0.8; p为标准代谢指数, 使用默认值0.75; Z0为背景死亡率的因子, 使用默认值0.6; λ为资源谱指数, 值为2−n+q; r0为资源谱生产力, 使用默认值4 g1−p/yearNote: i represent species; t represent time; w represent the weight, w0 represent the weight of the offspring; σ represent the selection width; SS represent the selective size of species; Q represent fishing capacity; E represent fishing effort; α represent assimilation efficiency, using the default value 0.6; f0 represent the initial feeding level; h indicates the maximum consumption constant, using the default value 40 g1−p/year; ks represent the coefficient of standard metabolic, and the default value represent 4 g1−p/year; ε represent the efficiency of offspring production, using the default value 1; n represent the exponent of maximum consumption, using the default value 2/3; q represent the volumetric search rate, using the default value of 0.8; p represent the exponent of standard metabolism, using the default value of 0.75; Z0 represent the factor for background mortality, using the default value of 0.6; λ represent the exponent of resource spectrum, the value represent 2−n+q; r0 represent the resource productivity, using the default value 4 g1−p/year
    下载: 导出CSV

    表  2   构建质量谱模型所选物种及参数

    Table  2   Species and parameters selected for constructing size-spectrum model

    物种Species Winf (g) Wmat (g) β Rmax SS (g) σ Kvb Q Gear Yieldobserved (g)
    海鳗Muraenesox spp. 13860.78 680.10 205 5.72×106 34.01 1.30 0.50 1 SN 1.60×109
    日本鲭Scomber japonicus 2900.00 263.56 45 2.25×109 13.18 1.30 0.30 1 TN 5.50×109
    Miichthys miiuy 2913.00 342.00 35 2.80×108 17.10 1.30 0.32 1 TN 8.50×108
    大黄鱼Larimichthys crocea 10659.05 101.33 95 1.08×107 5.07 1.30 0.43 1 TN 8.00×108
    小黄鱼Larimichthys polyactis 1081.15 36.75 310 4.61×109 1.84 1.30 0.44 1 GN 1.00×1010
    棘头梅童Collichthys lucidus 78.90 16.00 25 2.00×1011 0.80 1.30 0.42 1 SN 7.50×109
    带鱼Trichiurus lepturus 5000.00 326.27 20 8.76×108 16.31 1.30 0.42 1 SN 2.10×1010
    龙头鱼Harpadon nehereus 283.00 60.40 100 4.69×109 3.02 1.30 0.55 1 GN 2.00×109
    银鲳Pampus argenteus 6437.09 186.82 5000 8.90×108 9.34 1.30 0.25 1 TN 5.00×109
    黑鮟鱇Lophiomus setigerus 13496.00 260.00 260 1.93×107 13.00 1.30 0.35 1 TN 1.35×109
    舌鳎Cynoglossus spp. 231.00 27.00 30 3.32×109 1.35 1.30 0.57 1 TN 1.80×109
    管鞭虾Solenocera spp. 22.10 5.27 10 9.83×1010 0.26 1.30 1.00 1 SHN 1.80×1010
    三疣梭子蟹Portunus trituberculatus 639.29 159.82 10 4.79×108 7.99 1.30 1.62 1 SHN 1.25×1010
    短蛸Octopus ocellatus 252.00 63.00 55 1.13×108 3.15 1.30 1.44 1 TN 6.60×108
    副渔获物种Bycatch species 45.00 6.16 410 1.84×1011 0.31 1.30 0.60 1 TN 2.20×1010
    注: Gear中TN为单拖网; SN为张网; SHN为拖虾网; GN为刺网Note: TN in Gear represent single trawl; SN represent stow net; SHN represent shrimp net; GN represent gillnet
    下载: 导出CSV

    表  3   模拟场景及场景下不同渔具捕捞努力量变化

    Table  3   Scenarios and changes in fishing effort of different fishing gear under different scenarios

    模拟场景
    Scenarios
    场景效果
    Scenario effects
    场景下渔具捕捞
    努力量变化组合
    Change combination of
    fishing gear fishing effort under scenarios
    1 拖网捕捞努力量下降 拖网↓
    2 拖网捕捞努力量转移至张网 拖网↓张网↑
    3 拖网捕捞努力量转移至拖虾网 拖网↓拖虾网↑
    4 拖网捕捞努力量转移至刺网 拖网↓刺网↑
    5 张网捕捞努力量下降 张网↓
    6 张网捕捞努力量转移至拖虾网 张网↓拖虾网↑
    7 张网捕捞努力量转移至刺网 张网↓刺网↑
    8 拖虾网捕捞努力量下降 拖虾网↓
    9 拖虾网捕捞努力量转移至张网 拖虾网↓张网↑
    10 拖虾网捕捞努力量转移至刺网 拖虾网↓刺网↑
    11 刺网捕捞努力量下降 刺网↓
    12 刺网捕捞努力量转移至张网 刺网↓张网↑
    13 刺网捕捞努力量转移至拖虾网 刺网↓拖虾网↑
    注: 表中“↑”“↓”代表渔具捕捞努力量E在当前基础上十年间等差上升50% (1.5E)或等差下降50% (0.5E); “渔具A↓渔具B↑”指将减少渔具A捕捞努力量, 同时增加渔具B捕捞努力量, 即渔具A捕捞努力量转移至渔具BNote: “↑” and “↓” indicate the gear fishing effort E has increased by 50% (1.5E) or decreased by 50% (0.5E) in the past ten years from the current basis; “Fishing gear A↓ Fishing gear B↑” means the fishing effort of fishing gear A will be reduced while the fishing effort of fishing gear B will be increased, that is, the fishing effort of fishing gear A will be transferred to fishing gear B
    下载: 导出CSV

    表  4   不同场景下生态指标前后十年均值变化

    Table  4   Ten-year average changes of ecological indicators before and after different scenarios (%)

    场景
    Scenarios
    管理策略
    Management strategy
    总产量
    Total yield
    总生物量
    Biomass
    大型鱼类指数
    LFI
    平均体重
    MW
    最大平均体重
    MMW
    质量谱斜率
    SLOPE
    1 拖网↓ –11.65 +15.50 +8.58 +18.97 –0.27 +17.80
    2 拖网↓张网↑ –11.95 +12.59 +9.35 +23.49 +2.13 +18.68
    3 拖网↓拖虾网↑ –1.10 +19.54 +9.85 +26.58 +5.17 +19.98
    4 拖网↓刺网↑ –9.24 +15.21 +9.80 +19.33 +0.94 +19.04
    5 张网↓ –11.99 +12.93 +2.41 +1.41 –9.47 +14.05
    6 张网↓拖虾网↑ –2.95 +14.98 +1.41 +1.41 –7.60 +14.07
    7 张网↓刺网↑ –9.57 +12.33 +3.77 +1.56 –8.56 +14.89
    8 拖虾网↓ –20.87 –2.33 –0.72 –6.88 –9.64 –3.77
    9 拖虾网↓张网↑ –22.99 –8.84 –4.46 –12.33 –9.77 –14.36
    10 拖虾网↓刺网↑ –18.49 –2.82 +0.69 –6.82 –8.49 –2.66
    11 刺网↓ –6.90 +1.44 +1.37 +7.82 –0.18 +0.17
    12 刺网↓张网↑ –7.63 –4.37 +0.86 +9.59 +1.74 –7.67
    13 刺网↓拖虾网↑ +3.72 +4.21 +2.86 +15.79 +5.57 +2.71
    下载: 导出CSV
  • [1]

    Vinther M, Reeves S A, Patterson K R. From single-species advice to mixed-species management: taking the next step [J]. ICES Journal of Marine Science, 2004, 61(8): 1398-1409.

    [2]

    Sun M, Li Y, Suatoni L, et al. Status and management of mixed fisheries: a global synthesis [J]. Reviews in Fisheries Science & Aquaculture, 2023, 31(4): 458-482.

    [3]

    Kell L T, Crozier W W, Legault C M. Mixed and multi-stock fisheries [J]. ICES Journal of Marine Science, 2004, 61(8): 1330.

    [4]

    Thorpe R B, Dolder P J, Reeves S, et al. Assessing fishery and ecological consequences of alternate management options for multispecies fisheries [J]. ICES Journal of Marine Science, 2016, 73(6): 1503-1512.

    [5]

    Dolder P J, Thorson J T, Minto C. Spatial separation of catches in highly mixed fisheries [J]. Scientific Reports, 2018, 8(1): 13886. doi: 10.1038/s41598-018-31881-w

    [6]

    Martín P, Maynou F, Garriga-Panisello M, et al. Fishing effort alternatives for the management of demersal fisheries in the western Mediterranean [J]. Scientia Marina, 2019, 83(4): 293-304. doi: 10.3989/scimar.04937.29B

    [7]

    Ben-Hasan A, Walters C, Louton R, et al. Fishing-effort response dynamics in fisheries for short-lived invertebrates [J]. Ocean & Coastal Management, 2018(165): 33-38.

    [8]

    Ichinokawa M, Okamura H. Properly designed effort management for highly fluctuating small pelagic fish populations: a case study in a purse seine fishery targeting chub mackerel [J]. Marine Ecology Progress Series, 2019(617/618): 265-276.

    [9]

    Liu X, Heino M. Evaluating effort regulation in mixed fisheries: a Monte Carlo approach [J]. ICES Journal of Marine Science, 2019, 76(7): 2114-2124. doi: 10.1093/icesjms/fsz155

    [10]

    Jacobsen N S, Essington T E, Andersen K H. Comparing model predictions for ecosystem-based management [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73(4): 666-676. doi: 10.1139/cjfas-2014-0561

    [11]

    Giacomini H C, Shuter B J, Baum J K. Size-based approaches to aquatic ecosystems and fisheries science: a symposium in honour of Rob Peters [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73(4): 471-476. doi: 10.1139/cjfas-2016-0100

    [12]

    Hartvig M, Andersen K H, Beyer J E. Food web framework for size-structured populations [J]. Journal of Theoretical Biology, 2011, 272(1): 113-122. doi: 10.1016/j.jtbi.2010.12.006

    [13]

    Jacobsen N S, Gislason H, Andersen K H. The consequences of balanced harvesting of fish communities [J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1775): 20132701.

    [14]

    Andersen K H, Brander K, Ravn-Jonsen L. Trade-offs between objectives for ecosystem management of fisheries [J]. Ecological Applications, 2015, 25(5): 1390-1396. doi: 10.1890/14-1209.1

    [15]

    Zhang C, Chen Y, Ren Y. An evaluation of implementing long-term MSY in ecosystem-based fisheries management: Incorporating trophic interaction, bycatch and uncertainty [J]. Fisheries Research, 2016(174): 179-189. doi: 10.1016/j.fishres.2015.10.007

    [16]

    Blanchard J L, Andersen K H, Scott F, et al. Evaluating targets and trade-offs among fisheries and conservation objectives using a multispecies size spectrum model [J]. Journal of Applied Ecology, 2014, 51(3): 612-622. doi: 10.1111/1365-2664.12238

    [17]

    Lin Q, Zhang Y, Zhu J. Simulating the impacts of fishing on central and eastern tropical Pacific ecosystem using multispecies size-spectrum model [J]. Acta Oceanologica Sinica, 2022, 41(3): 34-43.

    [18]

    Zhang C, Chen Y, Thompson K, et al. Implementing a multispecies size-spectrum model in a data-poor ecosystem [J]. Acta Oceanologica Sinica, 2016(35): 63-73.

    [19]

    Wo J, Zhang C, Ji Y, et al. A multispecies TAC approach to achieving long-term sustainability in multispecies mixed fisheries [J]. ICES Journal of Marine Science, 2022, 79(1): 218-229. doi: 10.1093/icesjms/fsab257

    [20]

    de Juan S, Delius G, Maynou F. A model of size-spectrum dynamics to estimate the effects of improving fisheries selectivity and reducing discards in Mediterranean mixed demersal fisheries [J]. Fisheries Research, 2023(266): 106764. doi: 10.1016/j.fishres.2023.106764

    [21] 夏一璐, 陈琼, 赵荣磊, 等. 伏休前后舟山渔场单拖船低值杂鱼渔获物组成比较分析 [J]. 浙江海洋学院学报(自然科学版), 2015, 34(6): 520-525.]

    Xia Y L, Chen Q, Zhao R L, et al. Comparative analysis of species composition of low value/trash fish caught by single otter trawl in Zhoushan fishing ground before and after the closed fishing aeason [J]. Journal of Zhejiang Ocean University (Natural Science), 2015, 34(6): 520-525. [

    [22] 朱梦华, 钱卫国. 舟山渔场渔业资源衰退原因及修复对策 [J]. 农村经济与科技, 2022, 33(9): 79-82.] doi: 10.3969/j.issn.1007-7103.2022.09.023

    Zhu M H, Qian W G. Reasons for decline of fishery resources in Zhoushan fishing ground and countermeasures for restoration [J]. Rural Economy and Science-Technology, 2022, 33(9): 79-82. [ doi: 10.3969/j.issn.1007-7103.2022.09.023

    [23]

    Fulton E, Smith A, Punt A. Which ecological indicators can robustly detect effects of fishing [J]? ICES Journal of Marine Science, 2005, 62(3): 540-551.

    [24]

    Greenstreet S P R, Rogers S I, Rice J C, et al. Development of the EcoQO for the North Sea fish community [J]. ICES Journal of Marine Science, 2011, 68(1): 1-11. doi: 10.1093/icesjms/fsq156

    [25]

    Rochet M J, Rice J C. Do explicit criteria help in selecting indicators for ecosystem-based fisheries management [J]? ICES Journal of Marine Science, 2005, 62(3): 528-539. doi: 10.1016/j.icesjms.2005.01.007

    [26]

    Shin Y J, Cury P. Using an individual-based model of fish assemblages to study the response of size spectra to changes in fishing [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61(3): 414-431. doi: 10.1139/f03-154

    [27]

    Petchey O L, Belgrano A. Body-size distributions and size-spectra: universal indicators of ecological status [J]? Biology Letters, 2010, 6(4): 434-437.

    [28] 乔家乐, 栗小东, 李建龙, 等. 基于质量谱模型评估捕捞对蜈支洲岛海洋牧场鱼类群落的影响 [J]. 海洋学报, 2024, 46(1): 64-76.]

    Qiao J L, Li X D, Li J L, et al. Assessing the impacts of fishing on fish community in marine ranch of the Wuzhizhou Island based on size-spectrum model [J]. Haiyang Xuebao, 2024, 46(1): 64-76. [

    [29]

    Andersen K H, Beyer J E. Asymptotic size determines species abundance in the marine size spectrum [J]. The American Naturalist, 2006, 168(1): 54-61. doi: 10.1086/504849

    [30]

    Szuwalski C S, Burgess M G, Costello C, et al. High fishery catches through trophic cascades in China [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(4): 717-721.

    [31]

    Novaglio C, Blanchard J L, Plank M J, et al. Exploring trade-offs in mixed fisheries by integrating fleet dynamics into multispecies size-spectrum models [J]. Journal of Applied Ecology, 2022, 59(3): 715-728. doi: 10.1111/1365-2664.14086

    [32]

    Reum J C P, Blanchard J L, Holsman K K, et al. Ensemble projections of future climate change impacts on the eastern Bering sea food web using a multispecies size spectrum model [J]. Frontiers in Marine Science, 2020(7): 124.

    [33]

    Benoit D M, Chu C, Giacomini H C, et al. Size spectrum model reveals importance of considering species interactions in a freshwater fisheries management context [J]. Ecosphere, 2022, 13(7): e4163. doi: 10.1002/ecs2.4163

    [34]

    Andersen K H, Pedersen M. Damped trophic cascades driven by fishing in model marine ecosystems [J]. Proceedings Biological Sciences, 2010, 277(1682): 795-802.

    [35]

    Scott F, Blanchard J L, Andersen K H. Mizer: an R package for multispecies, trait-based and community size spectrum ecological modelling [J]. Methods in Ecology and Evolution, 2014, 5(10): 1121-1125. doi: 10.1111/2041-210X.12256

    [36]

    Wo J, Zhang C, Pan X, et al. Modeling the dynamics of multispecies fisheries: a case study in the coastal water of north Yellow Sea, China [J]. Frontiers in Marine Science, 2020(7): 524463.

    [37]

    Xia S, Yamakawa T, Zhang C, et al. A multispecies size-structured matrix model incorporating seasonal dynamics [J]. Ecological Modelling, 2021(453): 109612. doi: 10.1016/j.ecolmodel.2021.109612

    [38]

    Rice J C. Evaluating fishery impacts using metrics of community structure [J]. ICES Journal of Marine Science, 2000, 57(3): 682-688. doi: 10.1006/jmsc.2000.0735

    [39]

    Zhang C, Chen Y, Ren Y. The efficacy of fisheries closure in rebuilding depleted stocks: lessons from size-spectrum modeling [J]. Ecological Modelling, 2016(332): 59-66. doi: 10.1016/j.ecolmodel.2016.04.001

    [40]

    Anurag A A. The metabolic theory of Ecology [J]. Ecology, 2004, 85(7): 1790-1791.

    [41] 邹建伟. 南海北部陆架区渔业资源捕捞现状研究 [J]. 中国渔业经济, 2021, 39(3): 66-73.] doi: 10.3969/j.issn.1009-590X.2021.03.008

    Zou J W. Study on fishing status of fishery resources of continental shelf in the northern South China Sea [J]. Chinese Fisheries Economics, 2021, 39(3): 66-73. [ doi: 10.3969/j.issn.1009-590X.2021.03.008

    [42] 王迎宾, 郑基, 郑献之, 等. 舟山渔场禁渔线以外海域单拖网鱼类群落结构变动分析 [J]. 南方水产科学, 2012, 8(1): 8-15.] doi: 10.3969/j.issn.2095-0780.2012.01.002

    Wang Y B, Zheng J, Zheng X Z, et al. Variation analysis of single otter trawl fish community structure outside forbidden fishing line of Zhoushan fishing ground [J]. South China Fisheries Science, 2012, 8(1): 8-15. [ doi: 10.3969/j.issn.2095-0780.2012.01.002

    [43] 粟丽, 许友伟, 张魁, 等. 南海区拖网渔业发展趋势及其对渔业资源的影响 [J]. 南方水产科学, 2023, 19(4): 41-48.] doi: 10.12131/20230027

    Su L, Xu Y W, Zhang K, et al. Development trend of trawl fishery and its impact on fishery resources in South China Sea [J]. South China Fisheries Science, 2023, 19(4): 41-48. [ doi: 10.12131/20230027

    [44] 黄美珍. 台湾海峡及邻近海域6种对虾食性特征及其营养级研究 [J]. 台湾海峡, 2004, 23(4): 481-488.]

    Huang M Z. Study on feeding habits and nutrient level of shrimp species from Taiwan Strait and its adjacent sea areas [J]. Journal of Oceanography in Taiwan Strait, 2004, 23(4): 481-488. [

    [45]

    Rice J. Patterns of change in the size spectra of numbers and diversity of the North Sea fish assemblage, as reflected in surveys and models [J]. ICES Journal of Marine Science, 1996, 53(6): 1214-1225. doi: 10.1006/jmsc.1996.0146

    [46]

    Shin Y J, Rochet M J, Jennings S, et al. Using size-based indicators to evaluate the ecosystem effects of fishing [J]. ICES Journal of Marine Science, 2005, 62(3): 384-396.

    [47]

    Myers R A, Baum J K, Shepherd T D, et al. Cascading effects of the loss of apex predatory sharks from a coastal ocean [J]. Science, 2007, 315(5820): 1846-1850. doi: 10.1126/science.1138657

    [48]

    Casini M, Lövgren J, Hjelm J, et al. Multi-level trophic cascades in a heavily exploited open marine ecosystem [J]. Proceedings Biological Sciences, 2008, 275(1644): 1793-1801.

    [49]

    Genner M J, Sims D W, Southward A J, et al. Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale [J]. Global Change Biology, 2010, 16(2): 517-527. doi: 10.1111/j.1365-2486.2009.02027.x

    [50]

    Simpson S D, Jennings S, Johnson M P, et al. Continental shelf-wide response of a fish assemblage to rapid warming of the sea [J]. Current Biology, 2011, 21(18): 1565-1570.

图(6)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-10
  • 修回日期:  2024-10-27
  • 网络出版日期:  2024-11-19
  • 刊出日期:  2025-04-14

目录

    /

    返回文章
    返回