浙江近海多钩钩腕乌贼栖息分布特征与环境因子的关系

李建雄, 陈峰, 戴乾, 蒋日进, 徐开达, 周永东, 梁君, 朱凯

李建雄, 陈峰, 戴乾, 蒋日进, 徐开达, 周永东, 梁君, 朱凯. 浙江近海多钩钩腕乌贼栖息分布特征与环境因子的关系[J]. 水生生物学报. DOI: 10.7541/2025.2024.0431
引用本文: 李建雄, 陈峰, 戴乾, 蒋日进, 徐开达, 周永东, 梁君, 朱凯. 浙江近海多钩钩腕乌贼栖息分布特征与环境因子的关系[J]. 水生生物学报. DOI: 10.7541/2025.2024.0431
LI Jian-Xiong, CHEN Feng, DAI Qian, JIANG Ri-Jin, XU Kai-Da, ZHOU Yong-Dong, LIANG Jun, ZHU Kai. RELATIONSHIP BETWEEN HABITAT DISTRIBUTION CHARACTERISTICS AND ENVIRONMENTAL FACTORS OF ABRALIA MULTIHAMATA IN ZHEJIANG OFFSHORE[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2024.0431
Citation: LI Jian-Xiong, CHEN Feng, DAI Qian, JIANG Ri-Jin, XU Kai-Da, ZHOU Yong-Dong, LIANG Jun, ZHU Kai. RELATIONSHIP BETWEEN HABITAT DISTRIBUTION CHARACTERISTICS AND ENVIRONMENTAL FACTORS OF ABRALIA MULTIHAMATA IN ZHEJIANG OFFSHORE[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2024.0431
李建雄, 陈峰, 戴乾, 蒋日进, 徐开达, 周永东, 梁君, 朱凯. 浙江近海多钩钩腕乌贼栖息分布特征与环境因子的关系[J]. 水生生物学报. CSTR: 32229.14.SSSWXB.2024.0431
引用本文: 李建雄, 陈峰, 戴乾, 蒋日进, 徐开达, 周永东, 梁君, 朱凯. 浙江近海多钩钩腕乌贼栖息分布特征与环境因子的关系[J]. 水生生物学报. CSTR: 32229.14.SSSWXB.2024.0431
LI Jian-Xiong, CHEN Feng, DAI Qian, JIANG Ri-Jin, XU Kai-Da, ZHOU Yong-Dong, LIANG Jun, ZHU Kai. RELATIONSHIP BETWEEN HABITAT DISTRIBUTION CHARACTERISTICS AND ENVIRONMENTAL FACTORS OF ABRALIA MULTIHAMATA IN ZHEJIANG OFFSHORE[J]. ACTA HYDROBIOLOGICA SINICA. CSTR: 32229.14.SSSWXB.2024.0431
Citation: LI Jian-Xiong, CHEN Feng, DAI Qian, JIANG Ri-Jin, XU Kai-Da, ZHOU Yong-Dong, LIANG Jun, ZHU Kai. RELATIONSHIP BETWEEN HABITAT DISTRIBUTION CHARACTERISTICS AND ENVIRONMENTAL FACTORS OF ABRALIA MULTIHAMATA IN ZHEJIANG OFFSHORE[J]. ACTA HYDROBIOLOGICA SINICA. CSTR: 32229.14.SSSWXB.2024.0431

浙江近海多钩钩腕乌贼栖息分布特征与环境因子的关系

基金项目: 国家重点研发计划(2023YFD2401901); 浙江省公益技术应用研究项目(LGN21C190005)资助
详细信息
    作者简介:

    李建雄(1998—), 男, 硕士研究生; 主要研究领域为渔业资源。E-mail: 3287949749@qq.com

    通信作者:

    陈峰(1984—), 男, 博士, 高级工程师; 主要从事渔业资源及远洋渔业等方面研究。E-mail: cf0421223@163.com

  • 中图分类号: S932.8;Q178.1

RELATIONSHIP BETWEEN HABITAT DISTRIBUTION CHARACTERISTICS AND ENVIRONMENTAL FACTORS OF ABRALIA MULTIHAMATA IN ZHEJIANG OFFSHORE

Funds: Supported by National Key Research and Development Program of China(2023YFD2401901); Zhejiang Province Public Welfare Technology Application Research Project(LGN21C190005)
    Corresponding author:
  • 摘要:

    为探究春秋季多钩钩腕乌贼(Abralia multihamata)栖息分布特征与环境因子的关系, 研究采用2018—2023年春秋季浙江近海拖网调查资料及海洋环境数据, 以扫海面积法估算多钩钩腕乌贼生物量, 使用广义加性模型(Generalized additive model, GAM)进行分析。结果表明: 浙江近海多钩钩腕乌贼平均生物量具有显著的季节差异, 其在浙江近海南部主要分布于27°—29°N, 122°—124°E, 水深为40—70 m的海域。影响多钩钩腕乌贼生物量的因子为经纬度、深度、海表温度(Sea surface temperature, SST)、盐度(Sea surface salinity, SSS)和溶解氧浓度(Dissolved oxygen concentration, DO), 春季和秋季最适SST分别为14—18℃和18—22℃, 春季SSS和DO溶解氧作用不显著, 秋季最适SSS为27‰—35‰, 秋季DO最适浓度为7—11 mg/L。研究可为气候变化背景下浙江近海头足类资源养护提供科学依据。

    Abstract:

    Abralia multihamata is an important cephalopod species in Zhejiang offshore with a high biomass in the continental shelf waters of the East China Sea. It serves as an important bait organism for marine fish. In this study, the biomass of Abralia multihamata was estimated by using the swept area method based on trawl survey data and marine environmental data collected in spring and autumn of 2018 to 2023 in Zhejiang offshore. The relationship between habitat distribution characteristics of Abralia multihamata and environmental factors in spring and autumn was analyzed using generalized additive model (GAM). The results showed that the average biomass of Abralia multihamata in the Zhejiang offshore exhibited notable seasonal variation. It was mainly distributed within the sea area 27°—29°N, 122°—124°E with a depth of 40—70 m. The factors influencing the cephalopod biomass included longitude, latitude, depth, sea surface temperature (SST), sea surface salinity (SSS), and dissolved oxygen concentration (DO). The optimum SST was 14—18℃ in spring and 18—22℃ in autumn. The effect of SSS and DO on the biomass of Abralia multihamata were not significant during the spring season. The optimum SSS was 27‰—35‰ and the optimum DO was found in the range of 7—11 ml/L in autumn. Furthermore, the findings of this study provide a scientific foundation for the conservation of cephalopod resources in Zhejiang offshore, especially in light of the challenges posed by climate change.

  • 图  1   浙江近海拖网调查站位设置图

    Figure  1.   Distribution of sample station and water depth in Zhejiang offshore

    图  2   多钩钩腕乌贼平均生物量年际间变动

    Figure  2.   Annual changes of average biomass for A. multihamata

    图  3   春季各解释变量对多钩钩腕乌贼生物量的影响(虚线表示95%置信区间)

    Figure  3.   Impacts of explaining variables on abundance of A. multihamata in spring (the dashed line represents the 95% confidence interval)

    图  4   秋季各解释变量对多钩钩腕乌贼生物量的影响(虚线表示95%置信区间)

    Figure  4.   Impacts of explaining variables on abundance of A. multihamata in autumn (the dashed line represents the 95% confidence interval)

    图  5   春季浙江近海多钩钩腕乌贼生物量年际分布

    Figure  5.   Annual distribution of biomass for A. multihamata off Zhejiang coast in spring

    图  6   秋季浙江近海多钩钩腕乌贼生物量年际分布

    Figure  6.   Annual distribution of biomass for A. multihamata off Zhejiang coast in autumn

    表  1   各环境因子春秋季VIF值

    Table  1   VIF values of environmental factors in spring and autumn

    环境因子Environmental factor春季Spring秋季Autumn
    LAT7.72.7
    LON7.03.2
    SST1.51.8
    SSS3.43.7
    Chl.a1.01.3
    DO1.12.1
    DEPTH4.04.8
    下载: 导出CSV

    表  2   春秋季多钩钩腕乌贼与环境因子GAM模型选择结果

    Table  2   The selection result of GAM for A. multihamata in spring and autumn

    季节
    Season
    模型
    Model
    AIC 累计解释
    偏差
    Cumulative interpretation deviation (%)
    R2
    春季
    Spring
    ln(D+1)~s(LAT) 1300.439 12.3 0.118
    ln(D+1)~s(LAT)+s(LON) 1206.568 26.1 0.250
    ln(D+1)~s(LAT)+
    s(LON)+s(SST)
    1148.734 34.2 0.324
    ln(D+1)~s(LAT)+
    s(LON)+s(SSS)
    1128.111 36.3 0.346
    ln(D+1)~s(LAT)+
    s(LON)+s(SST)+s(SSS)
    1105.738 39.2 0.373
    ln(D+1)~s(LAT)+s(LON)+s(SST)+s(SSS)+s(Chl.a) 1107.406 39.3 0.372
    ln(D+1)~s(LAT)+s(LON)+s(SST)+s(SSS)+s(DO) 1025.366 41.0 0.390
    ln(D+1)~s(LAT)+
    s(LON)+s(SST)+s(SSS)+s(Chl.a)+s(DO)
    1027.174 41.1 0.389
    ln(D+1)~s(LAT)+
    s(LON)+s(SST)+s(SSS)+s(DO)+s(DEPTH)
    904.9 54 0.514
    秋季Autumn ln(D+1)~s(LAT) 2601.366 2.24 0.019
    ln(D+1)~s(LAT)+s(LON) 2376.841 27.3 0.269
    ln(D+1)~s(LAT)+
    s(LON)+s(SST)
    2332.934 31.8 0.312
    ln(D+1)~s(LAT)+
    s(LON)+s(SSS)
    2352.533 31.3 0.301
    ln(D+1)~s(LAT)+
    s(LON)+s(SST)+s(SSS)
    2319.727 34.5 0.331
    ln(D+1)~s(LAT)+
    s(LON)+s(SST)+
    s(SSS)+s(Chl.a)
    2076.319 39.0 0.371
    ln(D+1)~s(LAT)+
    s(LON)+s(SST)+
    s(SSS)+s(DO)
    2163.147 38.6 0.367
    ln(D+1)~s(LAT)+
    s(LON)+s(SST)+
    s(SSS)+s(Chl.a)+s(DO)
    1914.778 43.3 0.412
    ln(D+1)~s(LAT)+
    s(LON)+s(SST)+
    s(SSS)+s(Chl.a)+
    s(DO)+s(DEPTH)
    1891.6 44.8 0.429
    下载: 导出CSV

    表  3   GAM各因子统计结果

    Table  3   Analysis results of GAM for factors

    季节
    Season
    环境因子
    Environmental factor
    F P
    春季Spring LAT 1.182 0.28860
    LON 11.709 <2e-16***
    SST 3.279 0.00472**
    SSS 0.132 0.71606
    DO 1.410 0.19046
    DEPTH 20.062 <2e-16***
    秋季Autumn LAT 6.094 1.95e-5***
    LON 1.784 0.076671
    SST 14.644 1.44e-4***
    SSS 2.476 0.017101*
    Chl.a 0.212 0.667278
    DO 8.060 5.12e-5***
    DEPTH 13.325 1.39e-6***
    注: *P<0.05, **P<0.01, ***P<0.001
    下载: 导出CSV

    表  4   2018—2023年1—12月厄尔尼诺指数

    Table  4   Oceanic Niño Index (ONI) from January to December of 2018—2023

    年份Year 1 2 3 4 5 6 7 8 9 10 11 12
    2018 –0.9 –0.9 –0.7 –0.5 –0.2 0 0.1 0.2 0.5 0.8 0.9 0.8
    2019 0.7 0.7 0.7 0.7 0.5 0.5 0.3 0.1 0.2 0.3 0.5 0.5
    2020 0.5 0.5 0.4 0.2 –0.1 –0.3 –0.4 –0.6 –0.9 –1.2 –1.3 –1.2
    2021 –1 –0.9 –0.8 –0.7 –0.5 –0.4 –0.4 –0.5 –0.7 –0.8 –1 –1
    2022 –1 –0.9 –1 –1.1 –1 –0.9 –0.8 –0.9 –1 –1 –0.9 –0.8
    2023 –0.7 –0.4 –0.1 0.2 0.5 0.8 1.1 1.3 1.6 1.8 1.9 2
    注: ONI大于0.5的月份被定义为厄尔尼诺发生期, 小于-0.5的月份被定义为拉尼娜发生期Note: Months with ONI greater than 0.5 are defined as El Niño occurrence periods, while months with ONI less than -0.5 are defined as La Niña occurrence periods
    下载: 导出CSV
  • [1]

    Jereb P, Roper C F E. Cephalopods of the World. An Annotated and Illustrated Catalogue of Species Known to Date. Volume 2. Myopsid and Oegopsid Squids [M]. FAO Species Catalogue for Fishery Purposes, No. 4, Vol. 2. Rome, FAO, 2010: 192.

    [2] 董正之. 中国近海头足类的地理分布 [J]. 海洋与湖沼, 1978, 9(1): 108-118.]

    Dong Z Z. On the geographical distribution of the cephalopods in the Chinese waters [J]. Oceanologia et Limnologia Sinica, 1978, 9(1): 108-118. [

    [3] 陈新军. 世界头足类资源及其开发利用 [J]. 上海水产大学学报, 1996, 5(3): 193-200.]

    Chen X J. The exploitation and resources of cephalopods in the world [J]. Journal of Shanghai Ocean University, 1996, 5(3): 193-200. [

    [4]

    Morato T, González-Irusta J M, Dominguez-Carrió C, et al. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic [J]. Global Change Biology, 2020, 26(4): 2181-2202. doi: 10.1111/gcb.14996

    [5] 陈峰, 瞿俊跃, 方舟, 等. 浙江省沿岸春秋季头足类群落结构变化分析 [J]. 水产学报, 2020, 44(8): 1317-1328.]

    Chen F, Qu J Y, Fang Z, et al. Variation of community structure of Cephalopods in spring and autumn along the coast of Zhejiang Province [J]. Journal of Fisheries of China, 2020, 44(8): 1317-1328. [

    [6] 吴强, 陈瑞盛, 左涛, 等. 莱州湾头足类的群落结构及其与环境因子的关系 [J]. 水产学报, 2018, 42(5): 684-693.]

    Wu Q, Chen R S, Zuo T, et al. Community structure of Cephalopods and its relationships with environmental factors in Laizhou Bay, Bohai Sea [J]. Journal of Fisheries of China, 2018, 42(5): 684-693. [

    [7]

    Llpiński M R. Cephalopod life cycles: patterns and exceptions [J]. South African Journal of Marine Science, 1998, 20(1): 439-447. doi: 10.2989/025776198784126205

    [8]

    Rosa A L, Yamamoto J, Sakurai Y. Effects of environmental variability on the spawning areas, catch, and recruitment of the Japanese common squid, Todarodes pacificus (Cephalopoda: Ommastrephidae), from the 1970s to the 2000s [J]. ICES Journal of Marine Science, 2011, 68(6): 1114-1121. doi: 10.1093/icesjms/fsr037

    [9]

    Puerta P, Hidalgo M, González M, et al. Role of hydro-climatic and demographic processes on the spatio-temporal distribution of cephalopods in the western Mediterranean [J]. Marine Ecology Progress Series, 2014(514): 105-118.

    [10]

    Lauria V, Garofalo G, Gristina M, et al. Contrasting habitat selection amongst cephalopods in the Mediterranean Sea: When the environment makes the difference [J]. Marine Environmental Research, 2016(119): 252-266.

    [11]

    Maes J, Stevens M, Breine J. Modelling the migration opportunities of diadromous fish species along a gradient of dissolved oxygen concentration in a European tidal watershed [J]. Estuarine, Coastal and Shelf Science, 2007, 75(1/2): 151-162.

    [12]

    Liu X, Wang J, Zhang Y, et al. Comparison between two GAMs in quantifying the spatial distribution of Hexagrammos otakii in Haizhou Bay, China [J]. Fisheries Research, 2019(218): 209-217.

    [13] 方星楠, 余为, 陈新军. 东太平洋赤道海域茎柔鱼渔场的时空分布 [J]. 水产科学, 2022, 41(3): 475-483.]

    Fang X N, Yu W, Chen X J. Spatial distribution of fishing ground of jumbo flying squid Dosidicus gigas in the equator in Eastern Pacific Ocean [J]. Fisheries Science, 2022, 41(3): 475-483. [

    [14]

    Li M, Zhang C, Xu B, et al. A comparison of GAM and GWR in modelling spatial distribution of Japanese Mantis shrimp (Oratosquilla oratoria) in coastal waters [J]. Estuarine, Coastal and Shelf Science, 2020(244): 106928.

    [15]

    Carvalho F C, Murie D J, Hazin F H V, et al. Spatial predictions of blue shark (Prionace glauca) catch rate and catch probability of juveniles in the Southwest Atlantic [J]. ICES Journal of Marine Science, 2011, 68(5): 890-900. doi: 10.1093/icesjms/fsr047

    [16] 李杰, 张鹏, 晏磊, 等. 南海中南部海域鸢乌贼CPUE影响因素的GAM分析 [J]. 中国水产科学, 2020, 27(8): 906-915.]

    Li J, Zhang P, Yan L, et al. Factors that influence the catch per unit effort of Sthenoteuthis oualaniensis in the central-southern South China Sea based on a generalized additive model [J]. Journal of Fishery Sciences of China, 2020, 27(8): 906-915. [

    [17] 中华人民共和国农业部. 海洋渔业资源调查规范: SC/T 9403-2012[S]. 北京: 中国农业出版社, 2013.]

    Ministry of Agriculture of the People’s Republic of China. Technical specification for marine fishery resources survey: SC/T 9403-2012[S]. Beijing: China Agriculture Press, 2013.

    [18]

    Can M, Mazlum Y, Demirci A, et al. The catch composition and catch per unit of swept area (CPUE) of penaeid shrimps in the bottom trawls from Iskenderun Bay, Turkey [J]. Turkish Journal of Fisheries and Aquatic Sciences, 2004, 4(2): 87-91.

    [19]

    Pierce G J, Guerra A. Stock assessment methods used for cephalopod fisheries [J]. Fisheries Research, 1994, 21(1/2): 255-285.

    [20]

    Howell E A, Kobayashi D R. El Niño effects in the Palmyra atoll region: oceanographic changes and bigeye tuna (Thunnus obesus) catch rate variability [J]. Fisheries Oceanography, 2006, 15(6): 477-489. doi: 10.1111/j.1365-2419.2005.00397.x

    [21]

    Akaike H. A new look at the statistical model identification [J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723. doi: 10.1109/TAC.1974.1100705

    [22] 戴澍蔚, 唐峰华, 樊伟, 等. 北太平洋公海日本鲭资源分布及其渔场环境特征 [J]. 海洋渔业, 2017, 39(4): 372-382.] doi: 10.3969/j.issn.1004-2490.2017.04.002

    Dai S W, Tang F H, Fan W, et al. Distribution of resource and environment characteristics of fishing ground of Scomber japonicas in the North Pacific high seas [J]. Marine Fisheries, 2017, 39(4): 372-382. [ doi: 10.3969/j.issn.1004-2490.2017.04.002

    [23]

    Akinwande M O, Dikko H G, Samson A. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis [J]. Open Journal of Statistics, 2015, 5(7): 754-767. doi: 10.4236/ojs.2015.57075

    [24] 方瑞生. 东黄海鱿鱼渔场环境初步研究[J]. 海洋渔业, 1994, 16 (6): 249-253.]

    Fang R S. Preliminary study on the environment of squid fishing grounds in the East China Sea and Yellow Sea[J]. Marine Fisheries, 1994, 16 (6): 249-253s.

    [25]

    Hsu P C, Macagga R A T, Lu C Y, et al. Investigation of the Kuroshio-coastal current interaction and marine heatwave trends in the coral habitats of Northeastern Taiwan [J]. Regional Studies in Marine Science, 2024(71): 103431.

    [26]

    Chang K Y, Chen C S, Wang H Y, et al. The Antarctic oscillation index as an environmental parameter for predicting catches of the Argentine shortfin squid (Illex argentinus) (Cephalopoda: Ommastrephidae) in southwest Atlantic waters [J]. Fishery Bulletin, 2015, 113(2): 202-212. doi: 10.7755/FB.113.2.8

    [27] 崔晏华, 刘淑德, 张云雷, 等. 海州湾春季短蛸的栖息分布特征及其与环境因子的关系 [J]. 应用生态学报, 2022, 33(6): 1686-1692.]

    Cui Y H, Liu S D, Zhang Y L, et al. Habitat characteristics of Octopus ocellatus and their relationship with environmental factors during spring in Haizhou Bay, China [J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1686-1692. [

    [28] 方星楠, 何妍, 余为, 等. 秘鲁外海茎柔鱼栖息地时空分布及对环境因子的响应差异 [J]. 中国水产科学, 2021, 28(5): 658-672.] doi: 10.12264/JFSC2020-0297

    Fang X N, He Y, Yu W, et al. Spatio-temporal distribution of the jumbo flying squid Dosidicus gigas off Peru and differences in the effects of environmental conditions [J]. Journal of Fishery Sciences of China, 2021, 28(5): 658-672. [ doi: 10.12264/JFSC2020-0297

    [29]

    Shcherbina A. Variability and interleaving of upper-ocean water masses surrounding the north Atlantic salinity maximum [J]. Oceanography, 2015, 28(1): 106-113. doi: 10.5670/oceanog.2015.12

    [30]

    Cerezo Valverde J, García García B. Suitable dissolved oxygen levels for common Octopus (Octopus vulgaris cuvier, 1797) at different weights and temperatures: analysis of respiratory behaviour [J]. Aquaculture, 2005, 244(1/2/3/4): 303-314.

    [31] 陈峰, 李楠, 方舟, 等. 浙江近岸海域春夏季剑尖枪乌贼栖息地分布变化规律 [J]. 上海海洋大学学报, 2021, 30(5): 847-855.] doi: 10.12024/jsou.20201203245

    Chen F, Li N, Fang Z, et al. Habitat distribution change pattern of Uroteuthis edulis during spring and summer in the coastal waters of Zhejiang Province [J]. Journal of Shanghai Ocean University, 2021, 30(5): 847-855. [ doi: 10.12024/jsou.20201203245

    [32]

    Sagarminaga Y, Arrizabalaga H. Relationship of Northeast Atlantic albacore juveniles with surface thermal and chlorophyll-a fronts [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2014(107): 54-63.

    [33]

    Ichii T, Mahapatra K, Sakai M, et al. Life history of the Neon flying squid: effect of the oceanographic regime in the North Pacific Ocean [J]. Marine Ecology Progress Series, 2009(378): 1-11.

    [34] 余为, 陈新军, 易倩, 等. 北太平洋柔鱼早期生活史研究进展 [J]. 上海海洋大学学报, 2013, 22(5): 755-762.]

    Yu W, Chen X J, Yi Q, et al. Review on the early life history of Neon flying squid Ommastrephes bartramii in the North Pacific [J]. Journal of Shanghai Ocean University, 2013, 22(5): 755-762. [

    [35]

    Guerreiro M F, Borges F O, Santos C P, et al. Future distribution patterns of nine cuttlefish species under climate change [J]. Marine biology, 2023(170): 159.

    [36]

    Liu B L, Cao J, Truesdell S B, et al. Reconstructing cephalopod migration with statolith elemental signatures: a case study using Dosidicus gigas [J]. Fisheries Science, 2016, 82(3): 425-433. doi: 10.1007/s12562-016-0978-8

    [37]

    Xu M, Liu S, Zhang H, et al. Seasonal analysis of spatial distribution patterns and characteristics of Sepiella maindroni and Sepia kobiensis in the East China Sea region [J]. Animals, 2024, 14(18): 2716. doi: 10.3390/ani14182716

    [38]

    Sluis M Z, Judkins H, Dance M A, et al. Taxonomic composition, abundance and habitat associations of squid paralarvae in the northern Gulf of Mexico [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021(174): 103572.

    [39]

    Roura Á, Antón Álvarez-Salgado X, González Á F, et al. Life strategies of cephalopod paralarvae in a coastal upwelling system (NW Iberian Peninsula): insights from zooplankton community and spatio-temporal analyses [J]. Fisheries Oceanography, 2016, 25(3): 241-258. doi: 10.1111/fog.12151

    [40]

    Chen X J, Zhao X H, Chen Y. Influence of El Niño/La Niña on the western winter-spring cohort of Neon flying squid (Ommastrephes bartramii) in the northwestern Pacific Ocean [J]. ICES Journal of Marine Science, 2007, 64(6): 1152-1160. doi: 10.1093/icesjms/fsm103

    [41] 王春丽, 陈峰, 蒋日进, 等. 典型气候事件对浙江近海底层鱼类时空分布的影响 [J]. 生态学报, 2024, 44(10): 4231-4243.]

    Wang C L, Chen F, Jiang R J, et al. Effects of typical climate events on spatio-temporal distribution of bottom fish in the coastal waters of Zhejiang [J]. Acta Ecologica Sinica, 2024, 44(10): 4231-4243. [

    [42]

    Chen C T A, Jan S, Chen M H, et al. Far-field influences shadow the effects of a nuclear power plant’s discharges in a semi-enclosed bay [J]. Sustainability, 2023, 15(11): 9092. doi: 10.3390/su15119092

    [43]

    Thompson A R, Swalethorp R, Alksne M, et al. State of the California Current Ecosystem report in 2022: a tale of two La Niñas [J]. Frontiers in Marine Science, 2024(11): 1294011.

    [44] 郭彦龙, 赵泽芳, 乔慧捷, 等. 物种分布模型面临的挑战与发展趋势 [J]. 地球科学进展, 2020, 35(12): 1292-1305.] doi: 10.11867/j.issn.1001-8166.2020.110

    Guo Y L, Zhao Z F, Qiao H J, et al. Challenges and development trend of species distribution model [J]. Advances in Earth Science, 2020, 35(12): 1292-1305. [ doi: 10.11867/j.issn.1001-8166.2020.110

    [45] 张弼强, 陆化杰, 赵懋林, 等. 基于GAM模型西北印度洋鸢乌贼CPUE标准化 [J]. 海洋与湖沼, 2023, 54(1): 259-265.]

    Zhang B Q, Lu H J, Zhao M L, et al. Standardization of catch per unit effort(cpue) in northwest Indian ocean Sthenoteuthis oualaniensis based on generalized additive model [J]. Oceanologia et Limnologia Sinica, 2023, 54(1): 259-265. [

    [46] 徐晓萱, 谢玉, 刘姝含, 等. 基于GAM模型的浙江近海曼氏无针乌贼时空分布研究 [J]. 浙江海洋大学学报(自然科学版), 2022, 41(5): 400-407.]

    Xu X X, Xie Y, Liu S H, et al. Spatial-temporal distribution of Sepiella maindroni in Zhejiang coastal waters based on GAM model [J]. Journal of Zhejiang Ocean University(Natural Science), 2022, 41(5): 400-407. [

  • 期刊类型引用(20)

    1. 米玮洁,张舜,胡俊,高少波,胡菊香. 黄河内蒙古河段水文情势变化及生态效应初探. 水生态学杂志. 2024(01): 42-49 . 百度学术
    2. 班学君,樊博,刘瀚,俞立雄,林俊强,夏继红,张迪. 鱼类产卵行为与生态水文指标响应关系研究——以长江四大家鱼为例. 水生态学杂志. 2024(01): 67-74 . 百度学术
    3. 李莎,姜伟,李博,党莹超,苏巍,戴凌全. 长江葛洲坝坝下江段鱼类群落结构及多样性. 水生态学杂志. 2024(03): 121-130 . 百度学术
    4. 张云昌,丁洋,赵进勇. 河流伦理建构中的八个理论和实践问题探讨. 中国水利. 2024(16): 7-11 . 百度学术
    5. 易燃,陶江平,杨志,刘宏高,徐薇,曹俊,张鹏. 改进的栖息地法求解多种产漂流性卵鱼类生态流量方法研究. 中国农村水利水电. 2024(09): 45-51+59 . 百度学术
    6. 蒋祥龙,黎明政,杨少荣,林鹏程,常涛,王春伶,张晨,高欣. 鄱阳湖鱼类多样性的时空变化特征研究. 水生生物学报. 2023(03): 376-388 . 本站查看
    7. 周月娟,高雷,段辛斌,姜伟,黄安阳,王珂,陈大庆,汪登强. 基于耳石微结构的长江监利断面草鱼和鲢仔鱼群体日龄结构研究. 长江流域资源与环境. 2023(02): 324-330 . 百度学术
    8. 徐薇,金瑶,陈桂亚,董纯,易燃,赵娜,陶江平. 三峡水库十年生态调度(2011—2020年)期间下游沙市江段产漂流性卵鱼类自然繁殖变化. 湖泊科学. 2023(05): 1729-1741 . 百度学术
    9. 高雷,郭国忠,杨浩,陈大庆,王珂,段辛斌. 长江中游洪湖江段四大家鱼早期资源及生态调度影响. 中国水产科学. 2023(12): 1556-1565 . 百度学术
    10. 高欣,赵亚辉,田菲,王晓爱,黎明政,林鹏程,常涛,俞丹,刘焕章. 中国内陆水体鱼类多样性监测专项网的监测和研究进展. 生物多样性. 2023(12): 199-210 . 百度学术
    11. 霍堂斌,宋聃,刘伟,唐富江,王继隆,张澜澜,李喆,赵荣伟. 松花江下游富锦江段鱼类早期资源状况. 中国水产科学. 2022(01): 91-101 . 百度学术
    12. 彭云鑫,方弟安,徐东坡,丁隆强,黎加胜,任鹏,何晓辉,罗宇婷. 长江安庆段草鱼仔稚鱼资源时空动态特征与水文因子的相关性. 中国水产科学. 2022(02): 314-324 . 百度学术
    13. 蒋祥龙,黎明政,杨少荣,林鹏程,王春伶,张晨,高欣. 鄱阳湖鱼类集合群落结构特征及其时间变化研究. 长江流域资源与环境. 2022(03): 588-601 . 百度学术
    14. 李鹏程,荣义峰,杜浩,王普渊,刘文成,刁亚芹. 基于深度学习的青海湖裸鲤产卵场遥感识别方法. 中国水产科学. 2022(03): 398-407 . 百度学术
    15. 王小豪,方弟安,孙海博,何苗,薛向平. 长江如皋江段仔稚鱼资源现状调查分析. 南方农业学报. 2022(06): 1742-1751 . 百度学术
    16. 向浩,林枫,伍遇普,田波,蔡志宇,吴益平,黄盼君,刘千凡,周志国. 长江中游宜昌段浮游动物群落结构特征与环境因子相关性分析. 黑龙江水产. 2022(05): 3-12 . 百度学术
    17. 汤正阳,蒋爱萍,林俊强,任玉峰,张迪,刘新波,杨靖,赵庆绪. 长江流域水工程生态环境保护研究进展. 水利水电技术(中英文). 2022(S2): 297-309 . 百度学术
    18. 祁涛,班璇,杜浩,郭文献,杜耘,龙奥运,南璐艺,石小涛,郑楚洋. 长江中游鱼类敏感水文期内水文情势对其资源量的影响评估. 长江流域资源与环境. 2022(12): 2621-2632 . 百度学术
    19. 胡春明,董熙,尤立,李曜. 红花尔基水利枢纽对下游河道水文情势影响研究. 干旱区资源与环境. 2021(06): 89-95 . 百度学术
    20. 王慧,张建新,田翊霏,陈君,耿硕,杨元昊,王立新. 湑水河国家级水产种质资源保护区鱼类资源调查与评价. 家畜生态学报. 2021(11): 54-59 . 百度学术

    其他类型引用(6)

图(6)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 26
出版历程
  • 收稿日期:  2024-11-03
  • 修回日期:  2024-12-19
  • 网络出版日期:  2025-01-15

目录

    /

    返回文章
    返回