三峡水库不同区域对鱼类群落结构和鱼类组成动态的影响
EFFECT OF THE DISTANCE FROM THE DAM ON RIVER FISH COMMUNITY STRUCTURE AND COMPOSITIONAL TRENDS, WITH REFERENCE TO THE THREE GORGES DAM, YANGTZE RIVER, CHINA
-
摘要: 研究选取三峡水库三个不同的区域来研究离坝距离对鱼类群落结构和鱼类组成动态的影响。2010年11月到2011年10月期间共采集了8680尾鱼类样本,隶属于11科58种,其中鲤科鱼类占据了三峡水库鱼类的主体。夏季时的鱼类丰度显著高于其他季节的(P0.05)。鱼类物种多样性与丰度在靠近大坝的江段(秭归)最低,中游江段(万州)相对较高,远离大坝的江段(涪陵)居中。随着三峡大坝的建成,鱼类区系也由适应流水生存的种类转变为适应静水生存的种类。因此,三峡水库蓄水已经明显地改变了其原有的鱼类群落结构,鱼类组成的相对丰度也随着时间发生了改变。Abstract: The Three Gorges Reservoir on the Yangtze River of China is the largest hydropower project in the world. Three reaches from the upper Yangtze River were selected for the study on the effect of distance from the dam on river fish community structure and fish composition trends. A total of 8680 fish representing 58 species of 11 families were collected during the study period from November 2010 to October 2011. The results indicated that the fish assemblage in the reservoir was dominated by Cyprinids. Fish abundance in the summer was significantly higher than that in other seasons (P0.05). Fish species richness and abundance close to the dam (Zigui reach) were less, comparatively higher at the middle reach (Wanzhou reach) and intermediate at far from the dam (Fuling reach). Fish fauna shifted from lotic species to lentic species associated with reservoir construction. Therefore, it is evident that impoundment of the Three Gorges Reservoir has altered the fish assemblage structure, and fish species compositions have shifted in their relative abundance over time.
-
Keywords:
- Fish fauna shift /
- Impoundment /
- Species richness /
- The Three Gorges Reservoir /
- The Yangtze River
-
-
[1] Wang L, Infante D, Lyons J, et al. Effects of dams in river networks on fish assemblages in non-impoundment sections of rivers in Michigan and Wisconsin, USA. [J]. River Research and Applications, 2011, 27(4): 473487
[2] Wu J, Huang J, Han X, et al. The Three Gorges Dam: an ecological perspective [J]. Ecology and Environment, 2004, 2(5): 241248
[3] Kittinger J N, Coontz K M, Yuan Z, et al. Toward holistic evaluation and assessment: linking ecosystems and human well-being for the Three Gorges Dam [J]. EcoHealth, 2009, 6(4): 601613
[4] Huang H, Song D S, Yun H S, et al. Water level change caused from Three Gorges Dam construction in Yangtze River basin [J]. Journal of Coastal Research, 2011, 64: 16721675
[5] Baxter R M. Environmental effects of dams and impoundments [J]. Annual Review of Ecology and Systematics, 1977, 8: 255283
[6] Allan J D, Flecker A S. Biodiversity conservation in running waters [J]. Bioscience, 1993, 43(1): 3243
[7] Dudgeon D. The ecology of tropical Asian rivers and streams in relation to biodiversity conservation [J]. Annual Review of Ecology and Systematics, 2000, 31: 239263
[8] Greathouse A E, Pringle C M, McDowell W H, et al. Indirect upstream effects of dams. Consequences of migratory consumer extirpation in Puerto Rico [J]. Ecological Applications, 2006, 16(1): 339352
[9] Agostinho A A, Pelicice F M, Gomes L C, et al. Dams and the fish fauna of the neotropical region: impacts and management related to diversity and fisheries [J]. Brazilian Journal of Biology, 2008, 68(4): 11191132
[10] Lytle D A, Poff N L. Adaptation to natural flow regimes [J]. Trends in Ecology and Evolution, 2004, 19(2): 94100
[11] Pegg M A, Taylor R M. Fish species diversity among spatial scales of altered temperate rivers [J]. Journal of Biogeography, 2007, 34(3): 549558
[12] Wang L L, Yu Z Z, Dai H, et al. Eutrophication model for river-type reservoir tributaries and its applications [J]. Water Science and Engineering, 2009, 2(1): 1624
[13] Prchalova M, Kubecka J, Cech M, et al. The effect of depth, distance from the dam and habitat on spatial distribution of fish in an artificial reservoir [J]. Ecology of Freshwater Fish, 2009, 18: 247260
[14] Bhukaswan T, Pholprasith S. The fisheries of Ubolratana reservoir in the first ten years of impoundment [J]. Proc. IPFC, 1977, 17(3): 195205
[15] Balon E K. Kariba: the dubious benefits of large dams [J]. Ambio, 1978, 7(2): 4048
[16] Petrere J M. Fisheries in large tropical reservoirs in South America [J]. Lakes and Reservoirs: Research Management, 1996, 2(12): 111133
[17] Rosenberg D M, Berkes F, Bodaly R A, et al. Large scale impacts of hydroelectric development [J]. Environment Review, 1997, 5: 2754
[18] Penczak T, Kruk A. Patternizing of impoundment impacts (1985-2000) on fish assemblages in a lowland river using the Kohonen algorithm [J]. Journal of Applied Ichthyology, 2005, 21(3): 169177
[19] Han M, Fukushima T, Fukushima M, et al. Effect of damming on distribution of rainbow trout in Hokkaido, Japan [J]. Environmental Biology of Fishes, 2009, 84(2): 175181
[20] Gao X, Zeng Y, Wang J, et al. Immediate impacts of the second impoundment on fish communities in the Three Gorges Reservoir [J]. Environmental Biology of Fishes, 2010, 87(2): 163173
[21] Zhong Y, Power G, Environmental impacts of hydroelectric projects on fish resources in China [J]. Regulated Rivers Research and Management, 1996, 12(1): 8198
[22] Yang S, Xin G, Baoshan M A, et al. Seasonal dynamics of fish community in Mudong section of the Three Gorges Reservoir of the Yangtze River, China [J]. Chinese Journal of Applied Environmental Biology, 2010, 16(4): 555560
[23] Grossman G D, Nickerson D M, Freeman M, et al. Principal Component Analyses of assemblage structure data - utility of tests based on eigenvalues [J]. Ecology, 1991, 72(1): 341347
[24] Drastik V, Kubecka J, Tuser M, et al. The effect of hydropower on fish stocks: comparison between cascade and non-cascade reservoirs [J]. Hydrobiologia, 2008, 609: 2536
[25] Holmquist J G, Schmidt-Gengenbach J M, Yoshioka B B, et al. High dams and marine-freshwater linkages: Effects on native and introduced fauna in the Caribbean [J]. Conservation Biology, 1998, 12(3): 621630
[26] Yang S, Xin G, Li M et al. Interannual variations of the fish asemblage in the transitional zone of the Three Gorges Reservoir: persistence and stability [J]. Environmental Biology of Fishes, 2012, 93(2): 295304
-
期刊类型引用(16)
1. 熊飞,张伟,翟东东,刘红艳,陈元元,段辛斌,田辉伍,陈大庆. 蓄水后向家坝库区鱼类物种、分类和功能多样性变化. 湖泊科学. 2024(01): 200-212 . 百度学术
2. 赵娜,杨刚,吴祖立,宋超,熊敏思,赵峰,张涛. 环境DNA技术发展及其在长江流域水生生态学领域的应用研究进展. 海洋渔业. 2024(01): 119-128 . 百度学术
3. 张伟,翟东东,熊飞,刘红艳,陈元元,王莹,廖传松,段辛斌,田辉伍,邓华堂,陈大庆. 三峡库区鱼类群落结构和功能多样性. 生物多样性. 2023(02): 87-99 . 百度学术
4. 赵承远,王海龙,张德选,邓育林,邱承皓,郑欢,常娟,杨标. 龙开口水电站坝上坝下鱼类群落结构变化趋势. 云南水力发电. 2022(01): 224-229 . 百度学术
5. 李经纬,徐东坡,李巍,孔优佳,花少鹏,刘其根,张顺,胡忠军. 滆湖鱼类群落时空分布及其与环境因子的关系. 水产学报. 2022(04): 546-556 . 百度学术
6. 宋波澜,苏仟根,李添宝,刘良国. 沅水3种常见鱼类趋流行为在水电梯级开发中的指示意义. 水产学报. 2021(06): 971-981 . 百度学术
7. 王正阳,黄松茂,何琳剑,张铭枭,赵玉娇,彭军,孔令富. 新建元江县跨江大桥段的水生生物资源调查与评估. 安徽农业科学. 2021(12): 74-79 . 百度学术
8. 潘保柱,刘心愿. 长江流域水生态问题与修复述评. 长江科学院院报. 2021(03): 1-8 . 百度学术
9. 黎明政,马琴,陈林,刘焕章. 三峡水库产漂流性卵鱼类繁殖现状及水文需求研究. 水生生物学报. 2019(S1): 84-96 . 本站查看
10. 解崇友,牛亚兵,罗德怀,冯兴无,蒲德永,彭作刚,曾波,王志坚. 三峡库区重要支流鱼类多样性初探. 长江流域资源与环境. 2018(12): 2747-2756 . 百度学术
11. 赵媛莉,张倩倩,刘新华,章晋勇,毕永红. 三峡大坝对香溪河底栖微生物群落结构和多样性的影响. 水生态学杂志. 2017(03): 45-50 . 百度学术
12. 蔡林钢,牛建功,刘春池,邹明,谢鹏,阿达克·白克,刘建,李红. 新疆伊犁河不同河段鱼类的物种多样性和优势种. 水生生物学报. 2017(04): 819-826 . 本站查看
13. 杨志,唐会元,龚云,董纯,陈小娟,万成炎,常剑波. 正常运行条件下三峡库区干流长江上游特有鱼类时空分布特征研究. 三峡生态环境监测. 2017(01): 1-10 . 百度学术
14. 阮瑞,张燕,沈子伟,李燕,但言,李创举,倪朝辉. 三峡消落区鱼卵、仔稚鱼种类的鉴定及分布. 中国水产科学. 2017(06): 1307-1314 . 百度学术
15. 向鹏,刘良国,王冬,曾平文,邓玲玲,杨春英,杨品红. 湖南沅水五强溪水库鱼类资源现状及其历史变化. 湖泊科学. 2016(02): 379-386 . 百度学术
16. 叶少文,杨洪斌,陈永柏,刘家寿,胡征宇,毕永红,李钟杰. 三峡水库生态渔业发展策略与关键技术研究分析. 水生生物学报. 2015(05): 1035-1040 . 本站查看
其他类型引用(9)
计量
- 文章访问数: 1183
- HTML全文浏览量: 4
- PDF下载量: 1272
- 被引次数: 25