赤潮藻中肋骨条藻的光合作用对海水pH和N变化的响应

陈雄文, 高坤山

陈雄文, 高坤山. 赤潮藻中肋骨条藻的光合作用对海水pH和N变化的响应[J]. 水生生物学报, 2004, 28(6): 635-639.
引用本文: 陈雄文, 高坤山. 赤潮藻中肋骨条藻的光合作用对海水pH和N变化的响应[J]. 水生生物学报, 2004, 28(6): 635-639.
CHEN Xiong-Wen, GAO Kun-Shan. RESPONSE OF PHOTOSYNTHESIS OF THE BLOOM-FORMING MARINE DIATOM SKELETONEMA COSTATUM TO CHANGES IN pH AND INORGANIC NITROGEN CONCENTRATIONS IN SEAWATER[J]. ACTA HYDROBIOLOGICA SINICA, 2004, 28(6): 635-639.
Citation: CHEN Xiong-Wen, GAO Kun-Shan. RESPONSE OF PHOTOSYNTHESIS OF THE BLOOM-FORMING MARINE DIATOM SKELETONEMA COSTATUM TO CHANGES IN pH AND INORGANIC NITROGEN CONCENTRATIONS IN SEAWATER[J]. ACTA HYDROBIOLOGICA SINICA, 2004, 28(6): 635-639.

赤潮藻中肋骨条藻的光合作用对海水pH和N变化的响应

基金项目: 

国家自然科学基金重点项目(39830060)资助

RESPONSE OF PHOTOSYNTHESIS OF THE BLOOM-FORMING MARINE DIATOM SKELETONEMA COSTATUM TO CHANGES IN pH AND INORGANIC NITROGEN CONCENTRATIONS IN SEAWATER

  • 摘要: 为探讨赤潮发生时中肋骨条藻(Skeletonema coatatum)的光合作用生理变化,研究了不同无机氮(N)水平上,海水pH值升高对其胞外碳酸酐酶(CA)和光合生理特性的影响.海水pH从8.2升至8.7时,中肋骨条藻胞外CA被诱导,细胞对无机碳的亲和力(1/Km)提高;在pH 8.7时,高N条件下的胞外CA活性是低N条件下的3倍,1/Km值也提高了80%.单位叶绿素a的最大净光合能力(Pma)在不同pH和N水平上没有显著差异;但单位细胞的最大净光合能力(Pmc)提高了100%.这些结果表明,赤潮发生时,中肋骨条藻通过启动无机碳浓缩机制(CCM),提高细胞对无机碳利用效率,使其在低CO2(高pH)环境下维持光合机构正常运行;充足的N源有利于提高CCM的效率,从而提高CO2环境下的光合固碳能力.
    Abstract: The bloom-forming marine diatom Skeletonema costatum (Greville)Cleve (strain No.2042)was cultured under different levels of pH and inorganic nitrogen(N)at 20℃ and 210 μmolm-2s-1 (12:12/L:D)and its extracellular carbonic anhydrase(CA)and photosynthetic O2 evolution were investigated in order to see its physiological response to changes in pH under high N(300μmol/L)and low N(10μmol/L)levels during S.costatum bloom.The extracellular CA activity was assayed by the potentiometerical method,and the photosynthetic O2 evolution was determined by a Clark-type Oxygen Electrode.When pH in seawater rose from 8.2 to 8.7,the extracellular CA activity was induced and photosynthetic CO2 affinity(1/Km) increased,and,at pH8.7,the extracellular CA activity and photosynthetic CO2 affinity at the high N level were 2-times and 80% higher than those at the low N level,respectively.The chla-specific light-saturated photosynthetic rates(Pma)were no significant differences under different pH and N levels,but the cell-specific light-saturated photosynthetic rates(Pmc) was 100% higher at the high N level than at the low N level;By contrast,the cell-specific dark respiratory rates (Rdc) were insignificant differences among the different pH and N levels,but the chla-specific dark respiratory rates (Rdc) were l-fold higher at the low N level than at the high N level.The apparent photosynthetic efficiencies (α) were not significantly different for the alga grown among the different pH and N levels.The cellular chla content was l-fold higher at high-N-grown cells than at low-N-grown cells,but it was not affected by the pH changes.It was concluded that the alga increased the activities of extracellular CA and photosynthetic CO2 affinity with the rise of pH in seawater (or the decrease of CO2 in seawater),but their activites were higher at high N level than at low N level,suggesting that,during occurance of the bloom, S.costatum could develop the inorganic carbon concentration mechanism (CCM) to elevate the efficiency of inorganic carbon utilization,and to maintain the photosynthetic activity under low CO2 condition.The repleted N was benefited to improve the efficiency of CCM and then enhance the capacity of photosynthetic CO2 fixation under low CO2 (high pH) condition.
  • [1] Millie D F,Dionigi C P,Schofield O,et al.The importance of understanding the molecular,cellular,and ecophysiological bases of harmful algal blooms[J].J.Phycol.,1999,35:1353-1355[2] Zhou M J,Zhu M Y,Zhang J.Status of harmful algal blooms and related research activities in China [J].Chin.Bull.Life Sci.,2001,13(2):54-59[周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学,2001,13(2):54-59][3] Paerl H W.Coastal eutrophication and harmful algal blooms:importance of atmospheric deposition and groundwater as "new" nitrogen and other nutrient sources [J].Limnol.Oceanogr.,1997,42:1154-1165[4] Riebesell U,Wolf-Gladrow D A,Smetacek V.Carbon dioxide limitation of marine phytoplankton growth rates[J].Nature,1993,361:249-251[5] Hein M,Jensen K S.CO2 increases oceanic primary production[J].Nature,1997,388:526-527[6] Raven J A,Johnston A M.Mechanisms of inorganic carbon acquisition in marine phytoplankton and their implications for the use of other resources[J.].Limnol.Oceanogr.,1991,36:1701-1714[7] Badger M R,Price G D.The role of carbonic anhydrase in photosynthesis[J].Annu.Rev.Plant Physiol.Plant Mol.Biol.,1994,45:369-392[8] Tortell P D,Reinfelder J R,Morel F M M.Active uptake of bicarbonate by diatoms[J].Nature,1997,390:243[9] Kaplan A,Reinhold L.CO2 concentrating mechanisms in photosynthetic microorganisms[J].Annu.Rev.Plant Physiol.Plant Mol.Biol.1999,50:539-570[10] Zou D,Gao K,Photosynthetic bicarbonate utilization in Porphyra haitanensis(Bangiales,Rhodophyta)[J].Chin.Sci.Bull.,2002,47(19):1629-1634[11] Hobson L A,Hanson C E,Holeton C.An ecological basis for extracellular carbonic anhydrase in marine unicellular algae[J].J.Phycol.,2001,37:717-723[12] Liang S,Qian H L,Qi Y Z.Problem on the red tide in Coastal China Sea[J].Ecologic Science,2000,19(4):44-50[梁松,钱宏林,齐雨藻.中国沿海的赤潮问题.生态科学,2000,19(4):44-50][13] Huo W Y,Yu Z M,Zou J Z,et al.Outbreak of Skeletonema costatum red tide and its relations to environmental factors in Jiao Zhou Bay[J].Oceanologia.Limnologia.Sinica.,2001,32(3):311-318[霍文毅,俞志明,邹景忠,等.胶州湾中肋骨条藻赤潮与环境因子的关系.海洋与湖沼,2001,32(3):311-318][14] Hong J C,Huang X Q,Jiang X S,et al.Analysis of environmental factors during occurrence of Skeletonema costatum red tide in Changjiang river Estuary-the nutrient state[J].Oceanologia.Limnologia,Sinica.1994,25(2):179-185[洪君超,黄秀清,蒋晓山,等.长江口中肋骨条藻赤潮发生过程环境要素分析-营养盐状况.海洋与湖沼,1994,25(2):179-185][15] Wilbur K M,Anderson N G.Electrometric and colorimetric determination of carbonic anhydrase[J].J.Biol.Chem.,1948,176:147-154[16] Moroney J V,Bartletts G,Samuelsson G.Carbonic anhydrase in plant and algae[J].Plant Cell Environ,2001,24:141-153[17] Jeffrey S W,Humphrey G F.New spectrophotometric equations for determining chlorophylls a,b,c1 and c2 in higher plants,algae and natural phytoplankton[J].Biochem.Physiol.der Pfanzen,1975,167:191-194[18] Jassby A D,Platt T.Mathematical formulation of the relationship between photosynthesis and light for phytoplankton[J].Limnol.Oceanogr,1976,21:540-547[19] Gao K,Aruga Y,Asada K,et al.Calcification in the articulated coralline alga Corallina pilulifera,with special reference to the effect of elevated CO2 concentration[J].Mar.Biol.,1993,117:129-132[20] Zhang Z B,Chen Z D,Liu L S,et al.Principles and application of marine chemistry-Marine chemistry in the coastal water of China[M].Beijing:Marine Press.1999,106-111[张正斌,陈镇东,刘莲生,等.海洋化学原理和应用-中国近海的海洋化学.北京:海洋出版社.1999,106-111][21] Tortell P D.Evolutionary and ecological perspectives on carbon acquisition in phytoplankton[J].Limnol.Oceanogr.,2000,45:744-750[22] Wu T,Song L,Liu Y.Characterization of carboxysomal carbonic anhydrase in cyanobacterium Anabaena sp.PCC7120[J].Acta Hydrobiologica Sinica,1999,23(5):409-413[吴天福,宋立荣,刘永定.蓝藻Anabaena sp.PCC7120羧体碳酸酐酶的鉴定.水生生物学报,1999,23(5):409-413][23] MacIntyre H L,Kana T M,Anning T,et al.Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria[J].J.Phycol.,2002,38:17-38[24] Xia J,Gao K.Effects of high CO2 concentration on growth and photosynthesis of Spirulina maxima[J].Acta Hydrobiologica Sinica,2001,25(5):474-480[夏建荣,高坤山.高浓度CO2对极大螺旋藻生长和光合作用的影响.水生生物学报,2001,25(5):474-480][25] Ibelings B W,Maberly S C.Photoinhibition and the availability of inorganic carbon restrict photosynthesis by surface blooms of cyanobacteria[J].Limnol.Oceanogr.,1998,43:408-419[26] Portielje R,Lijklema L.Carbon dioxide fluxes across the air-water interface and its impact on carbon availability in aquatic systems[J].Limnol.Oceanogr.,1995,40:690-699[27] Falkowski P G,Raven J A.Aquatic photosynthesis[M].Malden:Blackwell Science 1997,128-162[28] Sunda W G,Huntsman S A.Interrelated influence of iron,light and cell size on marine phytoplankton growth[J].Nature,1997,390:389-391

    Millie D F,Dionigi C P,Schofield O,et al.The importance of understanding the molecular,cellular,and ecophysiological bases of harmful algal blooms[J].J.Phycol.,1999,35:1353-1355[2] Zhou M J,Zhu M Y,Zhang J.Status of harmful algal blooms and related research activities in China [J].Chin.Bull.Life Sci.,2001,13(2):54-59[周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学,2001,13(2):54-59][3] Paerl H W.Coastal eutrophication and harmful algal blooms:importance of atmospheric deposition and groundwater as "new" nitrogen and other nutrient sources [J].Limnol.Oceanogr.,1997,42:1154-1165[4] Riebesell U,Wolf-Gladrow D A,Smetacek V.Carbon dioxide limitation of marine phytoplankton growth rates[J].Nature,1993,361:249-251[5] Hein M,Jensen K S.CO2 increases oceanic primary production[J].Nature,1997,388:526-527[6] Raven J A,Johnston A M.Mechanisms of inorganic carbon acquisition in marine phytoplankton and their implications for the use of other resources[J.].Limnol.Oceanogr.,1991,36:1701-1714[7] Badger M R,Price G D.The role of carbonic anhydrase in photosynthesis[J].Annu.Rev.Plant Physiol.Plant Mol.Biol.,1994,45:369-392[8] Tortell P D,Reinfelder J R,Morel F M M.Active uptake of bicarbonate by diatoms[J].Nature,1997,390:243[9] Kaplan A,Reinhold L.CO2 concentrating mechanisms in photosynthetic microorganisms[J].Annu.Rev.Plant Physiol.Plant Mol.Biol.1999,50:539-570[10] Zou D,Gao K,Photosynthetic bicarbonate utilization in Porphyra haitanensis(Bangiales,Rhodophyta)[J].Chin.Sci.Bull.,2002,47(19):1629-1634[11] Hobson L A,Hanson C E,Holeton C.An ecological basis for extracellular carbonic anhydrase in marine unicellular algae[J].J.Phycol.,2001,37:717-723[12] Liang S,Qian H L,Qi Y Z.Problem on the red tide in Coastal China Sea[J].Ecologic Science,2000,19(4):44-50[梁松,钱宏林,齐雨藻.中国沿海的赤潮问题.生态科学,2000,19(4):44-50][13] Huo W Y,Yu Z M,Zou J Z,et al.Outbreak of Skeletonema costatum red tide and its relations to environmental factors in Jiao Zhou Bay[J].Oceanologia.Limnologia.Sinica.,2001,32(3):311-318[霍文毅,俞志明,邹景忠,等.胶州湾中肋骨条藻赤潮与环境因子的关系.海洋与湖沼,2001,32(3):311-318][14] Hong J C,Huang X Q,Jiang X S,et al.Analysis of environmental factors during occurrence of Skeletonema costatum red tide in Changjiang river Estuary-the nutrient state[J].Oceanologia.Limnologia,Sinica.1994,25(2):179-185[洪君超,黄秀清,蒋晓山,等.长江口中肋骨条藻赤潮发生过程环境要素分析-营养盐状况.海洋与湖沼,1994,25(2):179-185][15] Wilbur K M,Anderson N G.Electrometric and colorimetric determination of carbonic anhydrase[J].J.Biol.Chem.,1948,176:147-154[16] Moroney J V,Bartletts G,Samuelsson G.Carbonic anhydrase in plant and algae[J].Plant Cell Environ,2001,24:141-153[17] Jeffrey S W,Humphrey G F.New spectrophotometric equations for determining chlorophylls a,b,c1 and c2 in higher plants,algae and natural phytoplankton[J].Biochem.Physiol.der Pfanzen,1975,167:191-194[18] Jassby A D,Platt T.Mathematical formulation of the relationship between photosynthesis and light for phytoplankton[J].Limnol.Oceanogr,1976,21:540-547[19] Gao K,Aruga Y,Asada K,et al.Calcification in the articulated coralline alga Corallina pilulifera,with special reference to the effect of elevated CO2 concentration[J].Mar.Biol.,1993,117:129-132[20] Zhang Z B,Chen Z D,Liu L S,et al.Principles and application of marine chemistry-Marine chemistry in the coastal water of China[M].Beijing:Marine Press.1999,106-111[张正斌,陈镇东,刘莲生,等.海洋化学原理和应用-中国近海的海洋化学.北京:海洋出版社.1999,106-111][21] Tortell P D.Evolutionary and ecological perspectives on carbon acquisition in phytoplankton[J].Limnol.Oceanogr.,2000,45:744-750[22] Wu T,Song L,Liu Y.Characterization of carboxysomal carbonic anhydrase in cyanobacterium Anabaena sp.PCC7120[J].Acta Hydrobiologica Sinica,1999,23(5):409-413[吴天福,宋立荣,刘永定.蓝藻Anabaena sp.PCC7120羧体碳酸酐酶的鉴定.水生生物学报,1999,23(5):409-413][23] MacIntyre H L,Kana T M,Anning T,et al.Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria[J].J.Phycol.,2002,38:17-38[24] Xia J,Gao K.Effects of high CO2 concentration on growth and photosynthesis of Spirulina maxima[J].Acta Hydrobiologica Sinica,2001,25(5):474-480[夏建荣,高坤山.高浓度CO2对极大螺旋藻生长和光合作用的影响.水生生物学报,2001,25(5):474-480][25] Ibelings B W,Maberly S C.Photoinhibition and the availability of inorganic carbon restrict photosynthesis by surface blooms of cyanobacteria[J].Limnol.Oceanogr.,1998,43:408-419[26] Portielje R,Lijklema L.Carbon dioxide fluxes across the air-water interface and its impact on carbon availability in aquatic systems[J].Limnol.Oceanogr.,1995,40:690-699[27] Falkowski P G,Raven J A.Aquatic photosynthesis[M].Malden:Blackwell Science 1997,128-162[28] Sunda W G,Huntsman S A.Interrelated influence of iron,light and cell size on marine phytoplankton growth[J].Nature,1997,390:389-391

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-06-10
  • 修回日期:  2004-05-19
  • 发布日期:  2004-11-24

目录

    /

    返回文章
    返回