水霉菌的形态及ITS区分子鉴定
SAPROLEGNIA IDENTIFICATION BASED ON THEIR MORPHOLOGICAL CHARACTERISTICS AND ITS rDNA REGION
-
摘要: 研究利用形态学和分子生物学相结合的方法, 对从患病黄颡鱼病灶处分离的水霉菌株(HSY)的分类地位进行了研究。结果显示, 该菌在18—23℃均能形成游动孢子囊, 但只在20℃才大量释放游动孢子; 在15℃培养约3 周出现大量的藏卵器, 多数顶生, 形态与Saprolegnia litoralis 和Saprolegnia ferax 的均非常相似。序列比对分析显示, HSY 菌株与S. litoralis、S. bulbosa、S. oliviae、S. longicaulis、S. ferax、S. mixta 和S.anomalies 的ITS 区(包括5.8S rDNA)序列相似性均高于99%。系统发育分析显示, 所选的真菌分为3 个群,HSY 落于第一个群, MP 树显示HSY 菌株与S. litoralis、S. bulbosa、S. oliviae、S. longicaulis、S. ferax 以及S. mixta 枝系均互相平行, 而NJ 树显示其与S. ferax 和S. mixta 更近。综合形态学、ITS 区序列及系统发育分析, 将HSY 菌株暂定为多子水霉(Saprolegnia ferax)。Abstract: Saprolegnia is one of the main genus of water molds responsible for fungal infections of freshwater fish and their eggs. These infections are usually termed “saprolegniasis”, which can cause severe losses of freshwater fish in both nature and commercial fish farms. However, identification of the causative agent is often unmanageable, especially to those isolated from fish lesions. Traditionally, the generic definition was mainly based on the asexual characters, especially the mode of zoospores discharge, and species differentiation was mainly on the features of sexual reproductive organs including oogonia, antheridia, antheridial origin and oospore. However, many of these characters may be variable in one species or similar in different species and some strains either lose the ability to produce sexual reproduction or cannot be induced to form them under laboratory conditions. So, it is difficult to make definitive identification only using traditional morphological criteria in species level.In this study, we identified one saprolegnia isolate HSY obtained from yellow catfish (Pelteobagrus fulvidraco) based on the morphological and molecular characteristics. Results showed Isolate HSY grew luxuriantly on hemp seeds in water at 18—23℃ and were measured 1.5—4.0cm in diameter. The hyphae were stout, sparingly branched and measured between 20—58μm in diameter. Zoosporangia had formed abundantly and were often fusiform, clavate, straight or bent, lateral or terminal and renewed internally, measured 110—490 × 25—62μm. Primary zoospore discharge was typically saprolegnoid, pyriform; secondary zoospores emerged from the encysted, reniform; encysted zoospores were globose and measured 9—12μm in diameter. Oogonia were formed abundantly within three weeks at 15℃, not 18℃ and 23℃, mainly terminal, rarely lateral, and measured 75—108μm in diameter. Oogonial walls were sooth, and stalks were stout and bent. The attachment of antheridial cells was moderate (mainly androgynous and monoclinous, rarely diclinous). The oosproes were centric or subcentric, 3—25 per oogonium, and meansured 18—30μm. These morphological were very similar to S. litoralis and S. ferax.Comparing 744 base pairs of internal transcribed spacer (ITS) region and the 5.8S rDNA, we found a group of currently identified saprolegnia species including S. litoralis and S. ferax shared an almost identical ITS sequence (above 99% similarity) with that of isolate HSY. Then, thirty-nine available sequences for representative Saprolegnia spp. formed three phylogenetically separate clades. Isolate HSY fell into clade I which also comprised a group of isolates showing high similarities among ITS sequences but different in their morphological features. Moreover, both NJ and MP tree showed that almost all these species in clade I were parallel to each other. These suggested the isolates in clade I might be the same or closely related phylogenntic species and showed how unsatisfactory oogonium morphology appeared to be as a predictor of genetic relatedness.Consequently, in our opinions, HSY should be identified as S. ferax because S. litoralis and S. ferax could not be differentiated only by morphology; secondly, S. ferax was the first named one which has the similar sexual organs with isolate HSY; finally, the similarity of the ITS regions of S. ferax and HSY was above 99%. Meanwhile, the present results evidently suggested that Saprlegnia classification only based on sexual organs were likely to lead to artificial species. Many species once identified as different might be just one thing in fact.
-
Keywords:
- Oomycetes /
- Saprolegnia /
- Taxonomy /
- ITS rDNA /
- Phylogenetics
-
-
[1] Beakes G W, Wood S E, Burr A W. Features which characterizeSaprolegnia isolates from salmonid fish lesions—Areview. In: Salmon Saprolegniasis. G J Mueller (Eds.), U.S.Department of Energy, Bonneville Power Administration,Portland, Oregon. 1994, 33—66.
[2] Roberts R J. Fish Pathology [M] second edition. BailliereTindall Publishers, London, England. 1989, 467.
[3] Leclerc M C, Guillot J, Deville M. Taxonomic and phylogeneticanalysis of Saprolegniaceae (oomycetes) inferred fromLSU rDNA and ITS sequence comparisons [J]. Antonie vanLeeuwenhoek, 2000, 77: 369—377.
[4] Neish G A, Hughes G C. Diseases of fishes [M]. Book 6,Fungal Diseases of Fishes. T.W.F. Publications, Neptune,New Jersey. 1980, 159.
[5] Seymour R L. The genus Saprolegnia [J]. Nova Hedwigia,1970, 19: 1—124.
[6] Willoughby L G. Sprolegnias of salmonid fish in windermere:a critical analysis [J]. Journal of Fish Diseases, 1978, 1:51—67.
[7] Diéguez-Uribeondo J, Fregeneda-Grandes J M, Cerenius L,et al. Re-evaluation of the enigmatic species complexSaprolegnia diclina-Saprolegnia parasitica based onmorphological, physiological and molecular data [J]. FungalGenetics and Biology, 2007, 44: 585—601.
[8] Hatai K, Willoughby L G, Beakes G W. Some characteristicsof Saprolegnia obtained from fish hatcheries in Japan [J].Mycological Research, 1990, 94: 182—190.
[9] Stueland S, Hatai K, Skaar I. Morphological and physiologicalcharacteristics of Saprolegnia spp. Strains pathogenic toAtlantic salmon, Salmo salar L [J]. Journal of Fish Diseases,2005, 28: 445—453.
[10] Whisler H C. Identification of Saprolegnia spp. Pathogenicin Chinook Salmon [R]. Final Report, DE-AC79-90BP02836,US Department of Energy, Washington, D.C., 1996, 43.
[11] Bangyeekhun E, Quiniou S M A, Bly J E, et al. Characterisationof Saprolegnia sp. isolates from channel catfish [J].Diseases of Aquatic Organisms, 2001, 45: 53—59.
[12] Diéguez-Uribeondo J, Cerenius L, S?derh?ll K. Physiologicalcharacterisation of Saprolegnia parasitica isolates frombrown trout [J]. Aquaculture, 1996, 140: 247—257.
[13] Paul B, Steciow M M. Saprolegnia multispora, a new oomycetesisolated from water samples taken in a river in theBurgundian region of France [J]. Fems Mirobiol Lett, 2004,237: 393—398.
[14] Coker W C. The Saprolegniaceae with notes on other watermolds [M]. University of North Carolina Press, Chapel Hill.1923.
[15] Coker W C, Matthews V D. Saprolegniales [J]. North AmerFlora, 1937, 2: 15—76.
[16] Ni D S. The prevention and cure of fish saprolegniasis [M].Beijing: Agriculture Press. 1982 [倪达书. 鱼类水霉病的防治研究. 北京: 农业出版社. 1982].
[17] Ke X L, Wang J G, Gu Z M, et al. Study on total DNA extractionmethods of Saprolegnia [J]. Acta HydrobiologicaSinica, 2008, 32(1): 68—73[可小丽, 汪建国, 顾泽茂, 等.水霉菌总DNA提取方法研究. 水生生物学报, 2008, 32(1):68—73].
[18] Thompson J D, Gibson T J, Plewniak F, et al. TheclustalX-Windows inferface: flexible strategies for multiplesequence aligenment alided by quality analysis tools [J]. NucleicAcids Research, 1997, 24: 4876—4882.
[19] Kumar S, Tamura K, Nei M. MEGA 3: integrated softwarefor molecular evolutionary genetics anlysis and sequencealignment [J]. Briefings in Bioinformatics, 2004, 5: 150—163.
[20] Swofford D L. PAUP*: Phylogenetic Analysis Using Parimony(*and other methods) [M]. Version 4. Sinauer, Sunderland,MA. 2003.
[21] De Bary A, Woronin M. Untersuchuingen über Peronosporeenund Saprolegnieen und die Grundlagen eines natürlichenSystems der Pilze [J]. Beitr. Morph. Phys. Der Pilze,1881, 4: 1—145.
[22] De Bary A. Species der Saprolegnieen [J]. Bot. Ztg., 1888, 46:599—610, 613—621, 629—636, 645—653.
[23] Johnson J R. The genus Achlya. Morphology and taxonomy[M]. University of Michigan Press, Ann Arbor. 1956.
[24] Dick M W. Morphology and taxonomy of the Oomycetes,with special reference to Saprolegniaceae, Leptomitaceae,and pithyaceae. I. sexual reproduction [J]. New Phytol., 1969,68: 751—775.
-
期刊类型引用(17)
1. 程万,肖丕清,王素钦,王伯华,寻晴,罗玉双. 鱼类病原真菌水霉及其防控研究进展. 微生物学通报. 2024(10): 3781-3804 . 百度学术
2. 孔庆辉,刘海平,刘锁珠,索朗斯珠,徐业芬,赵晓玲,商振达. 巨须裂腹鱼水霉菌的分离鉴定及其对脾脏转录组的影响. 水产学报. 2023(08): 135-144 . 百度学术
3. 何丛丛,蒋蓓蕾. 鱼水霉病的防治. 当代畜禽养殖业. 2020(09): 63-64 . 百度学术
4. 魏冬梅,段魏魏,陈真,王咏星. 新疆五家渠地区鱼类水霉病病原菌18S rDNA序列系统分类分析. 江苏农业科学. 2019(15): 194-199 . 百度学术
5. 杨移斌,姜兰,宋怿,董靖,胥宁,艾晓辉. 黄颡鱼体表溃烂症初步研究. 淡水渔业. 2019(05): 51-55 . 百度学术
6. 魏冬梅,申慧,陈真,王咏星. 新疆五家渠鱼类水霉病原菌18S rDNA序列不同软件系统分析. 基因组学与应用生物学. 2019(11): 4944-4950 . 百度学术
7. 李晨曦,吕欢,胡殿明. 江西水生卵菌研究(Ⅰ):形态特征与系统分类. 生物灾害科学. 2015(03): 175-181 . 百度学术
8. 甄珍,王荻,刘红柏,范兆廷. 山女鳟水霉病病原的分离鉴定及其生物学特性. 江西农业大学学报. 2015(02): 333-338 . 百度学术
9. 叶鑫,赵依妮,曹海鹏,胡鲲,杨先乐. SpHtp1基因在不同种属水霉菌株中的分布. 华中农业大学学报. 2014(05): 99-104 . 百度学术
10. 张楠,王浩,丁庆忠,唐明虎,吕利群. 我国淡水养殖动物主要致病性水霉菌病原的分析. 上海海洋大学学报. 2014(01): 80-89 . 百度学术
11. 许佳露,曹海鹏,欧仁建,杨先乐. 黄颡鱼卵水霉病病原的分离鉴定及其无性繁殖特性. 微生物学通报. 2012(04): 579-587 . 百度学术
12. 邱并生. 黄颡鱼卵水酶病. 微生物学通报. 2012(04): 578 . 百度学术
13. 欧仁建,曹海鹏,郑卫东,胡鲲,许佳露,杨先乐. 黄颡鱼卵致病性绵霉的分离鉴定与药敏特性. 微生物学通报. 2012(09): 1280-1289 . 百度学术
14. 王浩,张楠,杨先乐,吕利群. 水霉菌环介导等温扩增检测方法的建立. 微生物学通报. 2012(12): 1835-1843 . 百度学术
15. 陈本亮,张其中. 水霉及水霉病防治的研究进展. 水产科学. 2011(07): 429-434 . 百度学术
16. 夏文伟,曹海鹏,王浩,张世奇,杨先乐. 彭泽鲫卵源致病性水霉的鉴定及其生物学特性. 微生物学通报. 2011(01): 57-62 . 百度学术
17. 崔丽娜,高淑霞,姜文学,杨丽萍,张振杰,牛钟相. 山东兔场皮肤真菌病病原rDNA-ITS区序列测定及分析. 中国兽医学报. 2011(12): 1749-1754+1768 . 百度学术
其他类型引用(21)
计量
- 文章访问数: 1249
- HTML全文浏览量: 3
- PDF下载量: 786
- 被引次数: 38