高浓度CO2对极大螺旋藻生长和光合作用的影响

夏建荣, 高坤山

夏建荣, 高坤山. 高浓度CO2对极大螺旋藻生长和光合作用的影响[J]. 水生生物学报, 2001, 25(5): 474-480.
引用本文: 夏建荣, 高坤山. 高浓度CO2对极大螺旋藻生长和光合作用的影响[J]. 水生生物学报, 2001, 25(5): 474-480.
XIA Jian-rong, GAO Kun-shan. EFFECTS OF HIGH CO2 CONCENTRATION ON GROWTH AND PHOTOSYNTHESIS OF SPIRULINA MAXIMA[J]. ACTA HYDROBIOLOGICA SINICA, 2001, 25(5): 474-480.
Citation: XIA Jian-rong, GAO Kun-shan. EFFECTS OF HIGH CO2 CONCENTRATION ON GROWTH AND PHOTOSYNTHESIS OF SPIRULINA MAXIMA[J]. ACTA HYDROBIOLOGICA SINICA, 2001, 25(5): 474-480.

高浓度CO2对极大螺旋藻生长和光合作用的影响

基金项目: 

国家杰出青年基金(39625002)

国家自然科学基金(39830060)

中国科学院淡水生态与生物技术重点实验室基金

EFFECTS OF HIGH CO2 CONCENTRATION ON GROWTH AND PHOTOSYNTHESIS OF SPIRULINA MAXIMA

  • 摘要: 以极大螺旋藻作为实验材料,研究了高CO2浓度对极大螺旋藻的生长和光合作用效应,结果表明在高光强下(400μmolm-2s-1),高浓度CO2对其生长和光合作用有明显的影响,高浓度CO2培养下,螺旋藻的比生长速率是低浓度CO2培养的12倍;而在低光强下,高浓度CO2对其生长和光合作用无明显影响.两种不同CO2浓度和光强下培养的极大螺旋藻,在不同的生长时期,分别测定其P-I曲线,结果表明低光强下培养的极大螺旋藻,在5d、8d、11d,两者的Ik、α值均无显着差异,Pmax在第5d、11d差异不显着,但在第8d有显着差异.而在高光强培养条件下,第8、11d通高浓度CO2培养的极大螺旋藻,其Pmax、α值明显大于通低浓度CO2培养的极大螺旋藻,但两者在第5d无明显差异.
    Abstract: Growth and photosynthesis of Spirulina maxima grown in different CO2 concentrations and light intensities had been studied. In low light intensity, no significant differences were observed in specific growth rate when the algae were cultured in different CO2 concentration, and so were the Pmax, α and Ik. But in high light intensity, the algae grew faster in high CO2 concentration compared to low CO2 concentration, the specific growth rate being 0 394d-1,0 475d-1,respectively. No significant differences were observed in Pmax, α and Ik in the fifth day. However, significant differences in Pmax, α were found in the eighth and eleventh day.
  • [1] Raven JA. Photosynthetic and non-photosynthetic roles of carbonic anhydrase in algae and cyanobacteria [J]. Phycologia, 1995,34(2):93-101[2] Nobutaka H, Toshifumi T, Yoshiharu F et al. Tolerance of microalgae to high CO2 and high temperature [J]. Phytochemistry, 1992, 31(10):3345-3348[3] Gao K, Aruga Y, Asada K, et al. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations [J]. Journal of Applied Phycology, 1991, 3:355-362[4] Gao, K. Y. Aruga, K. Asada et al. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp and G. chilensis [J]. Journal of Applied phycology. 1993,5:563-571[5] Raven JA. Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature[J]. Plant Cell Environment. 1991, 14:779-794[6] 林惠民,盐泽螺旋藻与其它螺旋藻的比较研究[J]. 水生生物学报,1991,15(1):27-34[7] Beck EW, Venkataraman LV. Production and utilization of blue-green alga Spirluina in india[M] [8] Orio Ciferri. Spirluina, the edible microorganism[J]. Microbiological Reviews, 1983, 47(4):63-80[9] Vonshak A, Richmond A. Mass production of the blue-green alga Spirulina: an overview[J]. Biomass, 1984, 4:105-125[10] Vonshak A, Boussiba S, Abellovich A, et al. Production of Spirluina biomass: maintenance of monoalgal culture outdoors[J]. Biotechnology and Bioengineering, 1983, 25:341-349[11] 李夜光,胡鸿钧. 螺旋藻培养液吸收CO2特性研究[J]. 武汉植物学研究,1996,14(3):253-260[12] Mackinney G. Absorption of light by chlorophyll solutions [J]. J Biol Chem 1941, 140:315-317[13] Kaplan A. Photoinhibition in Spirulina platensis: Response of photosynthesis and HCO-3 uptake capablility to CO2-depleted condition[J]. J Exp Bot, 1981,32:669-677[14] Pierce J, Omata T. Uptake and utilization of inorganic carbon by cyanobacteria[J]. Photosynthesis Research,1988,16:141-154[15] Volokita M, Zenvirth D, Kaplan A et al. Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis[J]. Plant physiol,1984,76:599-602[16] George SE, Anthony GM, David TC. High affinity transport of CO2 in the cyanobacterium Synechococcus UTEX 625[J]. Plant Physiol, 1991, 97:943-953[17] Coleman JR, The molecular and biochemical analyses of CO2 concentrating mechanisms in cyanobacteria and microalgae[J]. Plant Cell Environment, 1991, 14:861-867[18] Raven JA, Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature[J]. Plant Cell Environment 1991,14:779-794

    Raven JA. Photosynthetic and non-photosynthetic roles of carbonic anhydrase in algae and cyanobacteria [J]. Phycologia, 1995,34(2):93-101[2] Nobutaka H, Toshifumi T, Yoshiharu F et al. Tolerance of microalgae to high CO2 and high temperature [J]. Phytochemistry, 1992, 31(10):3345-3348[3] Gao K, Aruga Y, Asada K, et al. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations [J]. Journal of Applied Phycology, 1991, 3:355-362[4] Gao, K. Y. Aruga, K. Asada et al. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp and G. chilensis [J]. Journal of Applied phycology. 1993,5:563-571[5] Raven JA. Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature[J]. Plant Cell Environment. 1991, 14:779-794[6] 林惠民,盐泽螺旋藻与其它螺旋藻的比较研究[J]. 水生生物学报,1991,15(1):27-34[7] Beck EW, Venkataraman LV. Production and utilization of blue-green alga Spirluina in india[M] [8] Orio Ciferri. Spirluina, the edible microorganism[J]. Microbiological Reviews, 1983, 47(4):63-80[9] Vonshak A, Richmond A. Mass production of the blue-green alga Spirulina: an overview[J]. Biomass, 1984, 4:105-125[10] Vonshak A, Boussiba S, Abellovich A, et al. Production of Spirluina biomass: maintenance of monoalgal culture outdoors[J]. Biotechnology and Bioengineering, 1983, 25:341-349[11] 李夜光,胡鸿钧. 螺旋藻培养液吸收CO2特性研究[J]. 武汉植物学研究,1996,14(3):253-260[12] Mackinney G. Absorption of light by chlorophyll solutions [J]. J Biol Chem 1941, 140:315-317[13] Kaplan A. Photoinhibition in Spirulina platensis: Response of photosynthesis and HCO-3 uptake capablility to CO2-depleted condition[J]. J Exp Bot, 1981,32:669-677[14] Pierce J, Omata T. Uptake and utilization of inorganic carbon by cyanobacteria[J]. Photosynthesis Research,1988,16:141-154[15] Volokita M, Zenvirth D, Kaplan A et al. Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis[J]. Plant physiol,1984,76:599-602[16] George SE, Anthony GM, David TC. High affinity transport of CO2 in the cyanobacterium Synechococcus UTEX 625[J]. Plant Physiol, 1991, 97:943-953[17] Coleman JR, The molecular and biochemical analyses of CO2 concentrating mechanisms in cyanobacteria and microalgae[J]. Plant Cell Environment, 1991, 14:861-867[18] Raven JA, Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature[J]. Plant Cell Environment 1991,14:779-794

计量
  • 文章访问数:  1003
  • HTML全文浏览量:  0
  • PDF下载量:  512
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-03-16
  • 修回日期:  2001-04-01
  • 发布日期:  2001-09-24

目录

    /

    返回文章
    返回