长竹蛏不同地理居群的遗传多样性

陈燕妮, 孙振兴, 常林瑞

陈燕妮, 孙振兴, 常林瑞. 长竹蛏不同地理居群的遗传多样性[J]. 水生生物学报, 2010, 34(2): 270-277.
引用本文: 陈燕妮, 孙振兴, 常林瑞. 长竹蛏不同地理居群的遗传多样性[J]. 水生生物学报, 2010, 34(2): 270-277.
CHEN Yan-Ni, SUN Zhen-Xing, CHANG Lin-Rui. GENETIC DIVERSITY OF DIFFERENT GEOGRAPHICAL POPULATIONS IN Solen strictus REVEALED BY ISSR MARKERS[J]. ACTA HYDROBIOLOGICA SINICA, 2010, 34(2): 270-277.
Citation: CHEN Yan-Ni, SUN Zhen-Xing, CHANG Lin-Rui. GENETIC DIVERSITY OF DIFFERENT GEOGRAPHICAL POPULATIONS IN Solen strictus REVEALED BY ISSR MARKERS[J]. ACTA HYDROBIOLOGICA SINICA, 2010, 34(2): 270-277.

长竹蛏不同地理居群的遗传多样性

基金项目: 

山东省高校实验技术研究项目(2005-396)资助

GENETIC DIVERSITY OF DIFFERENT GEOGRAPHICAL POPULATIONS IN Solen strictus REVEALED BY ISSR MARKERS

  • 摘要: 研究以大连、烟台、莱州、青岛和赣榆近海5个不同地理居群的长竹蛏(Solen strictus Gould)为实验材料,利用ISSR分子标记进行了遗传多样性的研究。结果表明,13个ISSR引物在5个居群中共扩增出200个位点,平均每个引物记录15.4个位点,5个居群的多态位点比例为43.56%—60.43%。长竹蛏在物种水平上的Nei’s基因多样性指数和Shannon’s信息指数分别为0.2854和0.4390,在居群水平上分别为0.1674和0.2530。NJ聚类分析显示,青岛居群与赣榆居群的亲缘关系最近,而烟台居群与其他4个居群的亲缘关系较远。经Mantel检测,长竹蛏5个居群间的遗传距离与地理距离并无相关性(r=-0.0834,P>0.1)。AMOVA分子变异分析表明,长竹蛏的遗传变异有47.71%发生在居群间,52.29%发生在居群内,居群内的遗传变异大于居群间的遗传变异。长竹蛏5个居群间的遗传分化系数(Gst)为0.2889,基因流(Nm)为1.3194。结果表明,长竹蛏具有较高的遗传多样性,但居群间已发生了一定程度的遗传分化。
    Abstract: The razor shell Solen strictus is a member of family Solenidae (Veneroida) bivalve. The Solen strictus distributes widely along the coasts of the Bohai Sea and the Yellow Sea in China, where is a commercial important and potential mariculture species. In this study, genetic diversity in five different geographical populations of the Solen strictus were analyzed by the Inter-Simple Sequence Repeat (ISSR) markers. The samples of the five populations were taken from the off-shores of Dalian (DL), Yantai (YT), Laizhou (LZ), Qingdao (QD) and Ganyu (GY), respectively. The objectives of present study are: 1) use clear amplified ISSR fragments to examine the genetic variation within and among populations of Solen strictus; 2) lay a foundation of selecting the parent Solen strictus for artificial propagation.Total genomic DNA was extracted from vivisectional foot muscle of two-year-old Solen strictus with standard method. DNA samples were stored at ?20 ℃ until use. The ISSR primers were made by Sangon Inc. (Shanghai, China), and we used 13 primers which were screened from 30 primers. PCR amplification reaction was carried out in a 25 μL mixture that included 1 × PCR buffer, 2.5 mM of MgCl2, 0.25 mM of dNTP, 0.5μM of primer, 1 unit of Taq DNA polymerase, and approximately 40 ng of template DNA. The PCR cycling conditions were: preamplification denaturation at 94 ℃ for 5 min followed by 45 cycles, each cycle included 45s denaturation at 94 ℃, 45s annealing at 52 ℃, 90s extension at 72 ℃, and then a final extension at 72 ℃ for 10 min, amplified products resolved by electrophoresis in 1.5% agarose gels.Genetic parameters were calculated by using software POPGENE (version 1.32) that included percentages of polymorphic loci, observed number of alleles, effective number of alleles, Nei’s gene diversity, Shannon’s information index, genetic differentiation coefficient (Gst), gene flow (Nm) and Nei’s unbiased genetic distances. The genetic variation within and among populations of the Solen strictus was estimated by an analysis of molecular variance (AMOVA) using software WINAMOVA (version 1.55). The dendrogram was constructed on Nei’s unbiased genetic distance and neighbor-joining (NJ) cluster analysis which was determined for the five populations and the 100 individuals from these populations by software MEGA (version 4.0), respectively. The Mantel test was taken for correlation between genetic and geographic distance with software TFPGA (version 1.3).The results showed that total of 200 loci from five populations were amplified with 13 primers, average 15.4 loci each primer. The proportion of polymorphic loci in the five populations ranged from 43.56 % to 60.43 %. The Nei’s gene diversity and Shannon’s information index of Solen strictus was 0.2854 and 0.4390 at species level, 0.1674 and 0.2530 at population level, respectively. NJ cluster analysis indicated that QD population and GY population were the nearest in genetic relationships, and the genetic distance between YT population and other four populations were farther. There was no correlation between genetic and geographic distance among the five populations studied by the Mantel test (r = ?0.0834, P > 0.1). The AMOVA demonstrated that the among-population component accounted for 47.71 % of the total variation, while the within-population component accounted for 52.29 %. The within-population genetic variation was apparently larger than the among-population. The genetic differentiation coefficient (Gst) and the gene flow (Nm) were 0.2889 and 1.3194, respectively among the five populations.These data indicates that the genetic diversity of Solen strictus is relatively high, and there is genetic differentiation of some extent among the five populations of Solen strictus. The genetic differentiation among populations could be attributed to the limited remotion and the discontiguous habitat. Anyhow, the results of above research will be helpful for the conservation and utilization of resources, and provide a basis for artificial propagation of Solen strictus.
  • [1]

    Chen L M, Kong X Y, Yu Z N, et al. Sequence comparisonand phylogenetic analysis of mtDNA 16S rRNA and COIgene fragments in three species of razor shell [J]. MarineSciences, 2005, 29(8): 27—32 [陈丽梅, 孔晓瑜, 喻子牛,等. 3 种蛏类线粒体16S rRNA 和COI 基因片段的序列比较及其系统学初步研究. 海洋科学, 2005, 29(8): 27—32].

    [2]

    Wu R X, Wang J, Su Y Q, et al. The polymorphism of genomicDNA in three species of razor shell [J]. Journal ofXiamen University (Natural Science), 2008, 47(5): 739—742[吴仁协, 王军, 苏永全, 等. 3 种蛏基因组DNA 的多态性研究. 厦门大学学报(自然科学版), 2008, 47(5): 739—742].

    [3]

    Wang D Q, Li T W, Su X R. Comparison of genetic diversitybetween hatchery stock and wild population of Sinonovaculaconstricta Lamarck in Xiangshan Bay [J]. Journal of FisherySciences of China, 2005, 12(2): 138—143 [王冬群, 李太武,苏秀榕. 象山缢蛏养殖群体和野生群体遗传多样性的比较. 中国水产科学, 2005, 12(2): 138—143].

    [4]

    Niu D H, Li J L, Shen H D, et al. Sequence variability ofmitochondrial DNA-COI gene fragment and population geneticstructure of six Sinonovacula constricta populations [J].Acta Oceanologica Sinica, 2008, 30(3): 109—116 [牛东红,李家乐, 沈和定, 等. 缢蛏六群体线粒体DNA-COI 基因序列变异及群体遗传结构分析. 海洋学报, 2008, 30(3):109—116].

    [5]

    Liu Y G, Chen S L, Li J, et al. Genetic diversity in threeJapanese flounder (Paralichthys olivaceus) populations revealedby ISSR markers [J]. Aquaculture, 2006, 255(1-4):565—572.

    [6]

    Yang T Y, Guan J Y, Chen H X. Genetic diversity of threegeographical populations of Squaliobarbus curriculus revealedby ISSR analysis [J]. Acta Hydrobiologica Sinica,2008, 32(4): 529—533 [杨太有, 关建义, 陈宏喜. 三个地理群体赤眼鳟遗传多样性的ISSR 分析. 水生生物学报,2008, 32(4): 529—533].

    [7]

    Hou L, Lu H L, Zou X Y, et al. Genetic characterizations ofMactra veneriformis (Bivalve) along the Chinese coast usingISSR-PCR markers [J]. Aquaculture, 2006, 261(3): 865—871.

    [8]

    Varela M A, Gonzalez T A, Marinas L, et al. Genetic divergencedetected by ISSR markers and characterization of microsatelliteregions in Mytilus mussels [J]. Biochemical Genetics,2007, 45(7-8): 565—578.

    [9]

    Lü L L, Du X D, Wang Y, et al. Genetic diversity of threepopulations and the first generations of hybridization betweendifferent populations of pearl oyster, Pinctada martensii(Dunker) [J]. Acta Hydrobiologica Sinica, 2008, 32(1):26—32 [吕林兰, 杜晓东, 王嫣, 等. 马氏珠母贝3 个野生种群及种群间杂交后代遗传多样性的ISSR 分析. 水生生物学报, 2008, 32(1): 26—32].

    [10]

    Jiang Y P, He M X, Huang L M, et al. ISSR analysis of geneticdiversity in two populations of pearl oyster Pinctadamaxima [J]. Journal of Tropical Oceanography, 2008, 27(3):61—65 [姜因萍, 何毛贤, 黄良民, 等. 两个大珠母贝群体遗传多样性的ISSR 分析. 热带海洋学报, 2008, 27(3):61—65].

    [11]

    Sun S W, Sun Z X, Ge Y H, et al. Genetic structure of naturalpopulation of Neverita didyma based on ISSR markers [J].Acta Ecologica Sinica, 2008, 28(11): 5499—5505 [孙始威,孙振兴, 葛宜和, 等. 基于ISSR 标记的扁玉螺(Neveritadidyma)自然居群遗传结构. 生态学报, 2008, 28(11):5499—5505].

    [12]

    Wang Y. Primary study on artificial rearing of Solen strictus[J]. Journal of Oceanography in Taiwan Strait, 2001, 20(1):27—31 [王云. 长竹蛏人工育苗技术的初步研究. 台湾海峡, 2001, 20(1): 27—31].

    [13]

    Zheng S Y. The artificial rearing technology of razor shell atrearing room [J]. Fisheries Science and Technology Information,2006, 33(4): 154—156 [郑升阳. 长竹蛏室内人工育苗技术. 水产科技情报, 2006, 33(4): 154—156].

    [14]

    Li L, Sun Z X, Yang S D, et al. Analysis of genetic variationof abalone (Haliotis discus hannai) populations with microsatellitemarkers [J]. Hereditas (Beijing), 2006, 28(12):1549—1554 [李莉, 孙振兴, 杨树德, 等. 用微卫星标记分析皱纹盘鲍群体的遗传变异. 遗传, 2006, 28(12): 1549—1554].

    [15]

    Yeh F C, Boyle T J B. Population genetic analysis ofco-dominant and dominant markers and quantitative traits [J].Belgian Journal of Botany, 1997, 129(2): 157.

    [16]

    Zhang F M, Ge S. Data analysis in population genetics. I.analysis of RAPD data with AMOVA [J]. Biodiversity Science, 2002, 10(4): 438—444 [张富民, 葛颂. 群体遗传学研究中的数据处理方法I. RAPD数据的AMOVA分析. 生物多样性, 2002, 10(4): 438—444].

    [17]

    Excoffier L, Smouse P E, Quattro J M. Analysis of molecularvariance inferred from metric distances among DNAhaplotypes: Application to human mitochondrial DNA restrictiondata [J]. Genetics, 1992, 131(2): 479—491.

    [18]

    Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecularevolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution, 2007, 24(8): 1596—1599.

    [20]

    Labate J A. Software for population genetic analyses of molecularmarker data [J]. Crop Science, 2000, 40(6): 1521—1528.

    [21]

    Sokal R R, Jacquez G M, Wooten M C. Spatial autocorrelationanalysis of migration and selection [J]. Genetics, 1989,121(4): 845—855.

    [22]

    Jiang P, Shi J Q, Zhang Y, et al. Microsatellite variationanalysis of genetic diversity in six wild populations of nakedcommon carp [Gymnocypris przewalski (Kessler)] [J]. ActaEcologica Sinica, 2009, 29(2): 939—945 [蒋鹏, 史建全, 张研, 等. 应用微卫星多态分析青海湖裸鲤(Gymnocyprisprzewalski (Kessler))六个野生群体的遗传多样性. 生态学报, 2009, 29(2): 939—945].

    [23]

    Thorpe J P. The molecular clock hypothesis: Biochemicalevolution, genetic differentiation and systematic [J]. AnnualReview of Ecology Systematics, 1982, 13(1): 139—168.

    [24]

    Buso G S C, Rangel P H, Ferreira M E. Analysis of geneticvariability in South American wild rice populations (Oryzaglumaepatula) with isozymes and RAPD markers [J]. MolecularEcology, 1998, 7(1): 107—117.

    [25]

    Vignieri S N. Streams over mountains: influence of riparianconnectivity on gene flow in the Pacific jumping mouse(Zapus trinotatus) [J]. Molecular Ecology, 2005, 14(7):1925—1937.

    [26]

    Walker C W, Vila C, Landa A, et al. Genetic variation andpopulation structure in Scandinavian wolverine (Gulo gulo)populations [J]. Molecular Ecology, 2001, 10(1): 53—63.

    [27]

    Baille D, Barriere A, Felix M A. Oscheius tipulae, a widespreadhermaphroditic soil nematode, displays a highergenetic diversity and geographical structure thanCaenorhabditis elegans [J]. Molecular Ecology, 2008, 17(6):1523—1534.

  • 期刊类型引用(8)

    1. 张志伟, 陈爱华, 张志勇, 陆勤勤, 张朝晖, 姚国兴, 蔡永祥, 吴杨平, 曹奕, 张雨. 大竹蛏5个野生群体遗传多样性的微卫星分析. 中国水产科学. 2015(04): 740-748 . 百度学术
    2. 王成暖, 沈和定, 郑培. 中国沿海瘤背石磺不同地理群体遗传多样性的ISSR标记研究. 生物技术通报. 2014(09): 208-212 . 百度学术
    3. 牛友芽, 欧资东, 赵溶娟, 吴弼, 喻娟, 佘朝文. 不同蛇含委陵菜居群遗传多样性的ISSR分析. 怀化学院学报. 2012(11): 41-44 . 百度学术
    4. 叶莹莹, 徐梅英, 郭宝英, 吴常文. 厚壳贻贝(Mytilus coruscus)4个群体遗传多样性的ISSR分析. 海洋与湖沼. 2012(01): 113-119 . 百度学术
    5. 马召腾, 刘至治, 潘连德, 蒋鑫. 中国境内松江鲈鱼群体遗传变异的ISSR分析. 水产学报. 2012(07): 1042-1048 . 百度学术
    6. 王宝罗, 徐融, 金学峰, 潘浩鹏. 竹节蛏对铬元素的吸收积累量测定. 化学世界. 2011(03): 138-140 . 百度学术
    7. 郭宝英, 周超, 吕振明, 李继姬, 吴常文. 长蛸(Octopus variabilis)不同地理群体遗传多样性的ISSR分析. 海洋与湖沼. 2011(06): 868-873 . 百度学术
    8. 刘达博, 牛东红, 冯冰冰, 钟玉民, 李家乐. 乐清湾和三沙湾缢蛏群体遗传多样性的微卫星分析. 上海海洋大学学报. 2011(03): 350-357 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  1174
  • HTML全文浏览量:  6
  • PDF下载量:  716
  • 被引次数: 15
出版历程
  • 收稿日期:  2009-06-20
  • 修回日期:  2009-12-11
  • 发布日期:  2010-03-24

目录

    /

    返回文章
    返回