胭脂鱼胰蛋白酶cDNA 克隆以及不同蛋白含量日粮和饥饿对mRNA 表达和酶活力的影响

郑凯迪, 冯波, 李云, 李英文

郑凯迪, 冯波, 李云, 李英文. 胭脂鱼胰蛋白酶cDNA 克隆以及不同蛋白含量日粮和饥饿对mRNA 表达和酶活力的影响[J]. 水生生物学报, 2012, 36(1): 9-17. DOI: 10.3724/SP.J.1035.2012.00009
引用本文: 郑凯迪, 冯波, 李云, 李英文. 胭脂鱼胰蛋白酶cDNA 克隆以及不同蛋白含量日粮和饥饿对mRNA 表达和酶活力的影响[J]. 水生生物学报, 2012, 36(1): 9-17. DOI: 10.3724/SP.J.1035.2012.00009
ZHENG Kai-Di, FENG Bo, LI Yun, LI Ying-Wen. MOLECULAR CLONING OF TRYPSIN AND THE EFFECT OF DIETARY PROTEIN LEVELS AND STARVATION ON TRYPSIN mRNA EXPRESSION AND ENZYME ACTIVITY IN JUVENILE CHINESE SUCKER (MYXOCYPRINUS ASIATICUS BLEEKER)[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(1): 9-17. DOI: 10.3724/SP.J.1035.2012.00009
Citation: ZHENG Kai-Di, FENG Bo, LI Yun, LI Ying-Wen. MOLECULAR CLONING OF TRYPSIN AND THE EFFECT OF DIETARY PROTEIN LEVELS AND STARVATION ON TRYPSIN mRNA EXPRESSION AND ENZYME ACTIVITY IN JUVENILE CHINESE SUCKER (MYXOCYPRINUS ASIATICUS BLEEKER)[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(1): 9-17. DOI: 10.3724/SP.J.1035.2012.00009

胭脂鱼胰蛋白酶cDNA 克隆以及不同蛋白含量日粮和饥饿对mRNA 表达和酶活力的影响

基金项目: 

the National Key Scientific Program of China (2009CB941200)

the National Natural Science Foundation of China(30670226)

the Scientific Research Foundation for the Returned Overseas Chinese Scholars

Education Ministry of China(2006-331)

Doctoral and Post-doctoral Research Foundation of Southwest University (2005-05)

China Three GorgesCorporation Research Project to Y. Li

MOLECULAR CLONING OF TRYPSIN AND THE EFFECT OF DIETARY PROTEIN LEVELS AND STARVATION ON TRYPSIN mRNA EXPRESSION AND ENZYME ACTIVITY IN JUVENILE CHINESE SUCKER (MYXOCYPRINUS ASIATICUS BLEEKER)

  • 摘要: 为检测不同蛋白含量的日粮和饥饿对胭脂鱼(Myxocyprinus asiaticus)幼鱼胰蛋白酶活性和mRNA表达的影响, 首先用RACE 和PCR 的方法从胭脂鱼幼鱼的肝胰脏组织中克隆得到胰蛋白酶cDNA 全长, 然后用半定量RT-PCR 和酶活性检测方法分别检测了经不同蛋白含量日粮(酪蛋白含量分别为35%、45% 和 55%)投喂和饥饿处理后的胭脂鱼幼鱼的胰蛋白酶mRNA 表达水平和胰蛋白酶活力的变化。结果显示, 胭脂鱼胰蛋白酶cDNA 全长为912 bp。投喂蛋白质含量适中(45%酪蛋白)日粮组的试验鱼胰蛋白酶活性和mRNA 水平高于投喂高蛋白水平日粮组(55%酪蛋白)和低蛋白水平日粮组(35% 酪蛋白); 饥饿明显降低mRNA水平和胰蛋白酶活性; 胰蛋白酶活性的变化滞后于mRNA 水平的变化。胰蛋白酶活力的变化与mRNA 水平的变化之间未呈现直接相关性。因此, 胭脂鱼胰蛋白酶合成可能是一个由多种因素共同调控的复杂过程。
    Abstract: The effect of dietary protein and starvation on the expression of trypsin was evaluated in the Chinese sucker (Myxocyprinus asiaticus Bleeker). The complete trypsin cDNA was cloned from juvenile Chinese sucker pancreatic tissue by using RACE and PCR methods. We used semi-quantitative RT-PCR and enzymatic activity measurements to quantify mRNA expression and trypsin activity in fish that were either starved or fed differing levels of dietary casein (35%, 45% and 55%). The results showed that the Chinese sucker trypsin cDNA sequence was 912 bp in length. Trypsin activity and mRNA levels were higher in fish that were fed moderate (45% casein) levels of protein than those that were fed high or low levels. Starvation significantly decreased mRNA expression level and trypsin activity. The changes in trypsin activity tended to lag behind the changes in mRNA levels. There was no direct relationship between the trypsin activity and mRNA level. Given this, the trypsin synthesis is a complex process regulated by a balance of several factors in the Chinese sucker.
  • [1]

    Torrissen K R, Lied E, Espe M. Differences in digestion andabsorption of dietary protein in Atlantic salmon (Salmo salar)with genetically different trypsin isozymes [J]. Journal ofFish Biology, 1994, 45(6): 1087-1104

    [2]

    Lemieux H, Blier P, Dutil J D. Do digestive enzymes set aphysiological limit on growth rate and food conversionefficiency in the Atlantic cod (Gadus morhua) [J]? FishPhysiology and Biochemistry, 1999, 20(4): 293-303

    [3]

    Male R, Lorens J B, Smalas A O, et al. Molecular cloningand characterization of anionic and cationic variants oftrypsin from atlantic salmon [J]. European Journal ofBiochemistry, 1995, 232(2): 677-685

    [4]

    Suzuki T, Srivastava A S, Kurokawa T. cDNA cloning andphylogenetic analysis of pancreatic serine proteases fromJapanese flounder, Paralichthys olivaceus [J]. ComparativeBiochemistry and Physiology Part B: Biochemistry andMolecular Biology, 2002, 131(1): 63-70

    [5]

    GudmundsdóTtir á, GudmundsdóTtir E, óSkarsson S, et al.Isolation and characterization of cDNAs from Atlantic codencoding two different forms of trypsinogen [J]. EuropeanJournal of Biochemistry, 1993, 217(3): 1091-1097

    [6]

    Douglas S E, Gallant J W. Isolation of cDNAs fortrypsinogen from the winter flounder, Pleuronectes americanu;Pleuronectes americanus/e7> [J]. Journal ofMarine Biotechnology, 1998, 6(4): 214-219

    [7]

    Liu X D, Liang M Q, Zhang L M, et al. Effect of fish proteinhydrolysate levels on growth performance and biological andphysiological parameters in tongue sole (Cynoglossussemilaevis Günther, 1873) post-larvae [J]. Acta HydrobiologicaSinica, 2010, 34(2): 242-249 [柳旭东, 梁萌青, 张利民, 等. 饲料中添加水解鱼蛋白对半滑舌鳎稚鱼生长及生理生化指标的影响. 水生生物学报, 2010, 34(2): 242-249]

    [8]

    Ge H Y, Ding J H, Zhang W, et al. Tolerance and efficacy ofcysteamine hydrochloride in the diets of largemouth bass(Micropterus salmoides) [J]. Acta Hydrobiologica Sinica,2010, 34(6): 1142-1149 [葛红云, 丁建华, 张伟, 等. 半胱胺酸盐在大口黑鲈饲料中的应用及耐受性评价. 水生生物学报, 2010, 34(6): 1142-1149].

    [9]

    Gildberg A. Digestive enzyme activities in starvedpre-slaughter farmed and wild-captured, Atlantic cod (Gadusmorhua) [J]. Aquaculture, 2004, 238(1-4): 343-353

    [10]

    Wang C, Xie S, Zhu X, et al. Effects of age and dietaryprotein level on digestive enzyme activity and gene expressionof Pelteobagrus fulvidraco larvae [J]. Aquaculture, 2006,254(1-4): 554-562

    [11]

    Péres A, Zambonino Infante J L, Cahu C. Dietary regulationof activities and mRNA levels of trypsin and amylase in seabass (Dicentrarchus labrax) larvae [J]. Fish Physiology andBiochemistry, 1998, 19(2): 145-152

    [12]

    Furne M, Garcia-Gallego M, Hidalgo M C, et al. Effect ofstarvation and refeeding on digestive enzyme activities insturgeon (Acipenser naccarii) and trout (Oncorhynchusmykiss) [J]. Comparative Biochemistry and Physiology - PartA: Molecular & Integrative Physiology, 2008, 149(4): 420-425

    [13]

    Chan C R, Lee D N, Cheng Y H, et al. Feed deprivation andre-feeding on alterations of proteases in Tilapia Oreochromismossambicus [J]. Zoological Studies, 2008, 47(2): 207-214

    [14]

    Rungruangsak-Torrissen K, Moss R, Andresen L, et al.Different expressions of trypsin and chymotrypsin in relationto growth in Atlantic salmon (Salmo salar L.) [J]. FishPhysiology and Biochemistry, 2006, 32(1): 7-23

    [15]

    Jiang H B, Chen L Q, Wang Q, et al. Effects of dietaryprotein on activities of digestive enzyme and trypsin mRNAabundance in Eriocheir sinensis juveniles [J]. Journal ofFishery of China, 2005, 29(2): 216-221 [江洪波, 陈立侨,王群, 等. 饵料蛋白质对中华绒螯蟹仔蟹消化酶活性及胰蛋白酶mRNA 丰度的影响. 水产学报, 2005, 29(2): 216-221]

    [16]

    Muhlia-Almazan A, Garcia-Carreno F L, Sanchez-Paz J A, etal. Effects of dietary protein on the activity and mRNA levelof trypsin in the midgut gland of the white shrimp Penaeusvannamei [J]. Comparative Biochemistry and PhysiologyPart B: Biochemistry and Molecular Biology, 2003, 135(2):373-383

    [17]

    Bolasina S, Perez A, Yamashita Y. Digestive enzymesactivity during ontogenetic development and effect of starvationin Japanese flounder, Paralichthys olivaceus [J]. Aquaculture,2006, 252(2-4): 503-515

    [18]

    Murashita K, Kubota S, Kofuji P Y M, et al. Trypsin restorationtime in the pyloric ceca of yellowtail Seriola quinqueradiata[J]. Fisheries Science, 2005, 71(6): 1274-1279

    [19]

    Cahu C, Ronestad I, Grangier V, et al. Expression andactivities of pancreatic enzymes in developing sea basslarvae (Dicentrarchus labrax) in relation to intact andhydrolyzed dietary protein; involvement of cholecystokinin[J]. Aquaculture, 2004, 238(1-4): 295-308

    [20]

    Hummel B C W. A modified spectrophotometric determinationof chymotrypsin, trypsin, and thrombin [J]. CanadianJournal of Biochemistry and Physiology, 1959, 37: 1393-1399

    [21]

    Kofuji P Y M, Akimoto A, Hosokawa H, et al. Seasonalchanges in proteolytic enzymes of yellowtail Seriolaquinqueradiata (Temminck & Schlegel; Carangidae) fedextruded diets containing different protein and energy levels[J]. Aquaculture Research, 2005, 36(7): 696-703

    [22]

    Giri S S, Sahoo S K, Sahu A K, et al. Effect of dietaryprotein level on growth, survival, feed utilisation and bodycomposition of hybrid clarias catfish (Clarias batrachus ×Clarias gariepinus) [J]. Animal Feed Science Technology,2003, 104(1): 169-178

    [23]

    Eusebio P S, Coloso R M. Proteolytic enzyme activity ofjuvenile Asian sea bass, Lates calcarifer (Bloch), is increasedwith protein intake [J]. Aquaculture Research, 2002, 33(8):569-574

    [24]

    Carreira S M, Puigserver A J. Correlated regulation of themRNAs encoding secretory trypsin inhibitors and anionictrypsinogen I in the rat pancreas depending on the dietaryprotein intake [J]. The Journal of nutritional biochemistry,1996, 7(4): 230-236

    [25]

    Lazo, Holt, Arnold. Ontogeny of pancreatic enzymes inlarval red drum Sciaenops ocellatus [J]. AquacultureNutrition, 2000, 6(3): 183-192

    [26]

    Chen J M, Kukor Z, Le Marechal C, et al. Evolution oftrypsinogen activation peptides [J]. Molecular Biology andEvolution, 2003, 20(11): 1767-1777

    [27]

    Hara H, Hashimoto N, Akatsuka N, et al. Induction ofpancreatic trypsin by dietary amino acids in rats: Four trypsinogenisozymes and cholecystokinin messenger RNA [J].The Journal of nutritional biochemistry, 2000, 11(1): 52-59

    [28]

    Pain V M. Initiation of protein synthesis in eukaryotic cells[J]. European Journal of Biochemistry, 1996, 236(3): 747-771

    [29]

    Sanchez-Paz A, Garcia-Carreno F, Muhlia-Almazan A, et al.Differential expression of trypsin mRNA in the white shrimp(Penaeus vannamei) midgut gland under starvation conditions[J]. Journal of Experimental Marine Biology andEcology, 2003, 292(1): 1-17

    [30]

    Lemos F J A, Cornel A J, Jacobs-Lorena M. Trypsin andaminopeptidase gene expression is affected by age and foodcomposition in Anopheles gambiae [J]. Insect Biochemistryand Molecular Biology, 1996, 26(7): 651-658

    [31]

    Johnston D J, Ritar A J, Thomas C W. Digestive enzymeprofiles reveal digestive capacity and potential energysources in fed and starved spiny lobster (Jasus edwardsii)phyllosoma larvae [J]. Comparative Biochemistry andPhysiology Part B: Biochemistry and Molecular Biology,2004, 138(2): 137-144

计量
  • 文章访问数:  1125
  • HTML全文浏览量:  0
  • PDF下载量:  782
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-31
  • 修回日期:  2011-09-24
  • 发布日期:  2012-01-24

目录

    /

    返回文章
    返回