微颗粒饲料与冷藏桡足类对大黄鱼稚鱼消化酶活力、肠和肝脏显微结构的影响

于海瑞, 艾庆辉, 麦康森, 马洪明 José Luis Zambonino-Infante, Chantal Louise Cahu

于海瑞, 艾庆辉, 麦康森, 马洪明 José Luis Zambonino-Infante, Chantal Louise Cahu. 微颗粒饲料与冷藏桡足类对大黄鱼稚鱼消化酶活力、肠和肝脏显微结构的影响[J]. 水生生物学报, 2012, 36(6): 1087-1096. DOI: 10.3724/SP.J.1035.2012.01087
引用本文: 于海瑞, 艾庆辉, 麦康森, 马洪明 José Luis Zambonino-Infante, Chantal Louise Cahu. 微颗粒饲料与冷藏桡足类对大黄鱼稚鱼消化酶活力、肠和肝脏显微结构的影响[J]. 水生生物学报, 2012, 36(6): 1087-1096. DOI: 10.3724/SP.J.1035.2012.01087
EVALUATION OF MICRODIETS AND FROZEN COPEPODS ON DIGESTIVE ENZYME ACTIVITIES, INTESTINAL AND LIVER MICROSTRUCTURES OF LARGE YELLOW CROAKER (PSEUDOSCIAENA CROCEA R.) LARVAE[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(6): 1087-1096. DOI: 10.3724/SP.J.1035.2012.01087
Citation: EVALUATION OF MICRODIETS AND FROZEN COPEPODS ON DIGESTIVE ENZYME ACTIVITIES, INTESTINAL AND LIVER MICROSTRUCTURES OF LARGE YELLOW CROAKER (PSEUDOSCIAENA CROCEA R.) LARVAE[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(6): 1087-1096. DOI: 10.3724/SP.J.1035.2012.01087

微颗粒饲料与冷藏桡足类对大黄鱼稚鱼消化酶活力、肠和肝脏显微结构的影响

基金项目: 

国家自然科学基金(30400335)

国家863高技术研究发展计划(2004AA603610)

中法合作先进研究计划(PRA BT01-03)资助

EVALUATION OF MICRODIETS AND FROZEN COPEPODS ON DIGESTIVE ENZYME ACTIVITIES, INTESTINAL AND LIVER MICROSTRUCTURES OF LARGE YELLOW CROAKER (PSEUDOSCIAENA CROCEA R.) LARVAE

  • 摘要: 以初始体重(13.800.40)mg的大黄鱼(Pseudosciaena crocea R.)稚鱼为对象, 在室内系统内进行饲养试验, 研究了新开发的3种微颗粒饲料(Diet 1-Diet 3)、混合饲料(Diet 4: Diet 3和冷藏桡足类)与冷藏桡足类(Diet 5, 对照组)对25-60日龄大黄鱼稚鱼消化酶活力、肠和肝脏显微结构的影响。结果显示, 35和60日龄时, 微颗粒饲料组鱼苗间的胰蛋白酶活力差异不显著(P 0.05), 但均较25日龄时高, 而混合组和对照组无显著变化。除对照组鱼苗35日龄时的胰淀粉酶活力显著(P 0.05)高于25和60日龄外, 其他各组间均无显著差异。随着鱼苗的生长, 除混合组和对照组外, 各组间鱼苗肠道氨肽酶和碱性磷酸酶活力均逐渐升高。组织学结果显示, 混合组35日龄鱼苗前中肠黏膜上有大量脂滴, 而其他各组鱼苗则没有。微颗粒饲料组鱼苗肠黏膜褶皱比混合组和对照组多且深, 直肠黏膜上皮细胞中可见脂滴积累, 而对照组鱼苗直肠几乎没有褶皱, 并缺乏脂滴。微颗粒饲料组鱼苗肝细胞内有大量脂滴, 胞核移向细胞外周。混合组鱼苗35日龄时肝细胞内也有脂滴, 但数量在60日龄时减少。对照组鱼苗肝脏中可见类似于饥饿状态的胞间隙、细胞质塌陷和胞核固缩。以上结果表明, 合适的微颗粒饲料可促进大黄鱼稚鱼消化道的发育。基于Diet 1效果优于Diet 2和Diet 3, 可将其作为进一步研究大黄鱼稚鱼营养和微颗粒饲料的基础配方。
    Abstract: A feeding trial was conducted to evaluate effects of three newly developed microdiets (MDs: Diet 1-Diet 3), a mixed diet (Diet 4: Diet 3 combined with frozen copepods) and frozen copepods (Diet 5, control) on digestive enzymatic activities, intestine and liver microstructures of large yellow croaker (Pseudosciaena crocea R.) larvae, which had an initial mean body weight of (13.80 0.40) mg from 25 to 60 days after hatching (DAH). The results showed that trypsin activities exhibited no significant difference between fish fed with the MDs at 35 and 60 DAH, although those at 25 DAH showed lower trypsin activities, and there was no significant difference between fish fed with mixed diet and frozen copepods. No significant differences were observed between fish fed with the experimental diets except frozen copepods, the latter led to higher amylase activity at 35 DAH than at 25 and 60 DAH. As fish grew older, aminopeptidase N and alkaline phosphatase activities increased in fish fed with the experimental diets except for Diet 4 and Diet 5. No lipid droplets were observed in anterior-mediate intestinal mucosa in 35-day-old fish that were fed with the experimental diets with the exception of the Diet 4. Fish fed with the MDs presented deeper intestinal mucosa folds and supranuclear vacuoles in the rectum, while rectal folds from fish fed with the frozen copepods were nearly flat and lacked supranuclear vacuoles. Fish fed with the MDs displayed numerous lipid vacuoles in hepatocytes with nuclear migration. Liver from fish fed with the mixed diet had numerous lipid vacuoles in hepatocytes with nuclear migration at 35 DAH but such vacuoles decreased at 60 DAH. Liver from fish fed with the frozen copepods resulted in some intercellular spaces, collapsed cytoplasm and pycnotic nuclei of hepatocytes that were similar to starvation condition. These results indicated that suitable MDs could improve the development of digestive system of large yellow croaker larvae. Diet 1 can be used as basal formula for further research on nutrition and MD for large yellow croaker larvae because it was superior to Diets 2 and 3.
  • [1]

    Yu H R, Mai K S, Ma H M, et al. Evaluation of microdiets versus frozen copepods on growth, survival and selected chemical composition of large yellow croaker Pseudosciaena crocea larvae [J]. Acta Hydrobiologica Sinica, 2012, 36(1): 49-56

    [2]

    Cahu C L, Zambonino-Infante J L. Substitution of live food by formulated diets in marine fish larvae [J]. Aquaculture, 2001, 200(2): 161-180

    [3]

    Gisbert E, Piedrahita R H, Conklinm D E. Ontogenetic development of the digestive system in California halibut (Paralichthys californicus) with notes on feeding practices [J]. Aquaculture, 2004, 232(3): 455-470

    [4]

    Liu X D, Liang M Q, Zhang L M, et al. Effect of fish protein hydrolysate levels on growth performance and biological and physiological parameters in tongue sole (Cynoglossus semilaevisGnther, 1873) post-larvae [J]. Acta Hydrobiologica Sinica, 2010, 34(2): 242-249 [柳旭东, 梁萌青, 张利民, 等.饲料中添加水解鱼蛋白对半滑舌鳎稚鱼生长及生理生化指标的影响.水生生物学报, 2010, 34(2): 242-249]

    [5]

    Han T, Wang J T, Wang Y, et al. Effect of different fish protein hydrolysate (FPH) level of dietary supplements on growth and body composition of larvae of cobia (Rachycentron canadum) [J]. Acta Hydrobiologica Sinica, 2010, 34(1): 94-100 [韩涛, 王骥腾, 王勇, 等.饲料中不同水平鱼蛋白水解物对军曹鱼稚鱼生长及体组成的影响.水生生物学报, 2010, 34(1): 94-100]

    [6]

    Hermannsdottir R, Johannsdottir J, Smaradottir H, et al. Analysis of effects induced by a pollock protein hydrolysate on early development, innate immunity and the bacterial community structure of first feeding of Atlantic halibut (Hippoglossus hippoglossus L.) larvae [J]. Fish Shellfish Immunology, 2009, 27(5): 595-602

    [7]

    Cahu C L, Zambonino Infante J L. Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes [J]. Comparative Biochemistry and Physiology, 1994, 109A(2): 213-222

    [8]

    Zhang Y Q, Yin J S, Du Y, et al. Experimental starvation on Hucho taimen and definition of the point of no return [J]. Acta Hydrobiologica Sinica, 2009, 33(5): 945-950 [张永泉, 尹家胜, 杜伊, 等.哲罗鱼仔鱼饥饿实验及不可逆生长点的确定.水生生物学报, 2009, 33(5): 945-950]

    [9]

    Blair T, Castell J, Neil S, et al. Evaluation of microdiets versus live feeds on growth, survival and fatty acid composition of larval haddock (Melanogrammus aeglefinus) [J]. Aquaculture, 2003, 225(3): 451-461

    [10]

    Zheng Z Y, Su Y Z, You L, et al. Experiment on effects of nutritional-intensified rotifer on growth and survival rate of larval yellow croaker, Pseudosciaena crocea [J]. Journal of Oceanography in Taiwan Strait, 1996, 15(Suppl.): 7-10 [郑智莺, 苏跃中, 游岚, 等.轮虫的营养强化对大黄鱼生长及成活率影响的试验.台湾海峡, 1996, 15(增刊): 7-10]

    [11]

    Holm H, Hanssen L E, Krogdahl A, et al. High and low inhibitor soybean meals affect human duodenal proteinase activity differently: in vivo comparison with bovine serum albumin [J]. Journal of Nutrition, 1988, 118(4): 515-520

    [12]

    Mtais P, Bieth J. Dtermination de I-amylase par une microtechnique [J]. Annales de Biology Clinique, 1968, 26 (1-2): 133-142

    [13]

    Crane R K, Boge G, Rigal A. Isolation of brush border membranes in vesicular form from the intestinal spiral valve of the small dogfish (Scyliorhinus canicula) [J]. Biochimica et Biophysica Acta, 1979, 554(1): 264-267

    [14]

    Zambonino Infante J L, Cahu C L, Pres A. Partial substitution of di- and tripeptides for native proteins in sea bass diet improves Dicentrarchus labrax larval development [J]. Journal of Nutrition, 1997, 127(4): 608-614

    [15]

    Marous S, Louvard D, Baratti J. The aminopeptidase from hog-intestinal brush border [J]. Biochimica et Biophysica Acta, 1973, 321(1): 282-295

    [16]

    Bessey O A, Lowry O H, Brock M J. Rapid coloric method for determination of alkaline phosphatase in five cubic millimeters of serum [J]. Journal of Biological Chemistry, 1946, 164: 321-329

    [17]

    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72(2): 248-254

    [18]

    Ribeiro L, Zambonino Infante J L, Cahu C, et al. Digestive enzymes profile of Solea senegalensis post larvae fed Artemia and a compound diet [J]. Fish Physiology and Biochemistry, 2002, 27(1): 61-69

    [19]

    Ma H M, Cahu C L, Zambonino Infante J L, et al. Activities of selected digestive enzymes during larval development of large yellow croaker (Pseudosciaena crocea) [J]. Aquaculture, 2005, 245(2): 239-248

    [20]

    Zambonino-Infante J L, Cahu C L. Ontogeny of the gastrointestinal tract of marine fish larvae [J]. Comparative Biochemistry and Physiology, 2001, 130C(4): 477-487

    [21]

    Henning S J. Functional Development of the Gastrointestinal Tract [M]. In: Johnson L R (Eds.), Physiology of the Gastrointestinal Tract. New York: Raven Press. 1987, 285-300

    [22]

    Buchet V, Zambonino Infante J L, Cahu C. Variation in activities of some digestive enzymes during larval development of Sciaenops ocellatus [A]. In: Creswell L, Harache Y (Eds.), Island Aquaculture and Tropical Aquaculture, 4-9 May 1997, Les Trois Ilets, Martinique, Oostende, Belgium [C]. European Aquaculture Society. 1997, 55-56

    [23]

    Cahu C L, Zambonino-Infante J L. Is the digestive capacity of marine fish larvae sufficient for compound diet feeding? [J]. Aquaculture International, 1997, 5: 151-160

    [24]

    Ribeiro L, Zambonino-Infante J L, Cahu C L, et al. Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858 [J]. Aquaculture, 1999, 179(3): 465-473

    [25]

    Hall K C, Bellwood D R. Histological effects of cyanide, stress and starvation on the intestinal mucosa of Pomacentrus coelestis, a marine aquarium fish species [J]. Journal of Fish Biology, 1995, 47(3): 438-454

    [26]

    Gisbert E, Doroshov S I. Histology of the developing digestive system and the effect of food deprivation in larval green sturgeon (Acipenser medirostris) [J]. Aquatic Living Resources, 2003, 16(2): 77-89

    [27]

    Daz J P, Guyot E, Vigier S, et al. First events in lipid absorption during post-embryonic development of the anterior intestine in gilthead sea bream [J]. Journal of Fish Biology, 1997, 51(1): 180-192

    [28]

    Luizi F S, Gara B, Shields R J, et al. Further description of the development of the digestive organs in Atlantic halibut (Hippoglossus hippoglossus) larvae, with notes on differenttial absorption of copepod and Artemia prey [J]. Aquaculture, 1999, 176(1): 101-116

    [29]

    Santamara C A, Marn de Mateo M, Traveset R, et al. Larval organogenesis in common dentex Dentex dentex L. (Sparidae): histological and histochemical aspects [J]. Aquaculture, 2004, 237(2): 207-228

    [30]

    Deplano M, Daz J P, Connes R, et al. Appearance of lipid absorption capacities in larvae of sea bass Dicentrarchus labraxduring transition to the exotrophic phase [J]. Marine Biology, 1991, 108(3): 361-371

    [31]

    Salhi M, Hernndez-Cruz C M, Bessonart M, et al. Effect of different dietary polar lipid levels and different n-3 HUFA content in polar lipids on gut and liver histological structure of gilthead seabream (Sparus aurata) larvae [J]. Aquaculture, 1999, 179(2): 253-263

    [32]

    Leger C. Digestion, absorption and transport of lipids [M]. In: Cowey C B, Mackie A M, Bell G J (Eds.), Nutrition and Feeding in Fish. London: Academic Press. 1985, 299-331

    [33]

    Crespo S, Marn de Mateo M, Santamara C A, et al. Histopathological observations during larval rearing of common dentex Dentex dentexL. (Sparidae) [J]. Aquaculture, 2001, 192(1): 121-132

    [34]

    Fontagn S, Geurden Y, Escaffre A M, et al. Histological changes induced by dietary phospholipids in intestine and liver of common carp Cyprinus carpioL. larvae [J]. Aquacul ture, 1998, 161(2): 213-223

    [35]

    Caballero M J, Lpez-Calero G, Socorro J, et al. Combined effect of lipid level and fish meal quality on liver histology of gilthead seabream (Sparus aurata) [J]. Aquaculture, 1999, 179(2): 277-290

  • 期刊类型引用(4)

    1. 李卓,彭祖想,任同军,韩雨哲. 无鱼粉饲料中补充限制性氨基酸对鲤抗氧化及部分免疫酶活性的影响. 河北渔业. 2024(03): 5-10+25 . 百度学术
    2. 冯勇轶,马娇娇,张震,陈成勋,王庆奎,张修成,于学权,陈书奇. 日粮添加不同水平赖氨酸与蛋氨酸对珍珠龙胆石斑鱼生长性能及肌肉氨基酸水平的影响. 饲料研究. 2020(06): 45-47 . 百度学术
    3. 段晶,吴莉芳,王婧瑶,张东鸣,祖岫杰,刘艳辉,金昌洙. 蛋氨酸水平对洛氏鱥生长及消化酶和蛋白质代谢酶活力的影响. 西北农林科技大学学报(自然科学版). 2019(07): 23-31 . 百度学术
    4. 迟淑艳,韩凤禄,谭北平,董晓慧,杨奇慧,刘泓宇,章双. 饲料精氨酸水平对斜带石斑鱼幼鱼生长和肠道形态的影响. 水生生物学报. 2016(02): 388-394 . 本站查看

    其他类型引用(11)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 15
出版历程
  • 收稿日期:  2011-08-30
  • 修回日期:  2012-06-30
  • 发布日期:  2012-11-24

目录

    /

    返回文章
    返回