水解鱼蛋白对大菱鲆幼鱼消化率的影响

卫育良, 梁萌青, 郑珂珂, 王新星

卫育良, 梁萌青, 郑珂珂, 王新星. 水解鱼蛋白对大菱鲆幼鱼消化率的影响[J]. 水生生物学报, 2014, 38(5): 910-920. DOI: 10.7541/2014.136
引用本文: 卫育良, 梁萌青, 郑珂珂, 王新星. 水解鱼蛋白对大菱鲆幼鱼消化率的影响[J]. 水生生物学报, 2014, 38(5): 910-920. DOI: 10.7541/2014.136
WEI Yu-Liang, LIANG Meng-Qing, ZHENG Ke-Ke, WANG Xin-Xing. THE EFFECTS OF FISH PROTEIN HYDROLYSATE ON THE DIGESTIBILITY OF JUVENILE TURBOT (SCOPHTHALMUS MAXIMUS L.)[J]. ACTA HYDROBIOLOGICA SINICA, 2014, 38(5): 910-920. DOI: 10.7541/2014.136
Citation: WEI Yu-Liang, LIANG Meng-Qing, ZHENG Ke-Ke, WANG Xin-Xing. THE EFFECTS OF FISH PROTEIN HYDROLYSATE ON THE DIGESTIBILITY OF JUVENILE TURBOT (SCOPHTHALMUS MAXIMUS L.)[J]. ACTA HYDROBIOLOGICA SINICA, 2014, 38(5): 910-920. DOI: 10.7541/2014.136

水解鱼蛋白对大菱鲆幼鱼消化率的影响

基金项目: 

公益性行业专项(201303053);国家自然科学基金项目(31340076,31172423)资助

THE EFFECTS OF FISH PROTEIN HYDROLYSATE ON THE DIGESTIBILITY OF JUVENILE TURBOT (SCOPHTHALMUS MAXIMUS L.)

  • 摘要: 设计5组等氮等脂等能的饲料, 在室内流水系统进行68d的养殖实验, 探讨高植物蛋白饲料中添加不同分子量水解鱼蛋白对大菱鲆Scophthalmus maximus L.[(16.050.03) g]幼鱼消化能力的影响。分别在高植物蛋白饲料中添加5.4%超滤水解鱼蛋白(UF)、5.5%未经超滤水解鱼蛋白(FPH)、5.5%超滤截留水解鱼蛋白(RF), 其均占饲料蛋白的10%, 以及不添加水解蛋白(PP), 以上各组鱼粉含量均为18%, 对照组(FM)鱼粉含量为67.5%。研究结果表明, FM组的大菱鲆特定生长率与UF、FPH及PP组无显著差异(P0.05); 饲料效率、蛋白质效率和蛋白质沉积率在FM组与UF组无显著差异(P0.05), 但显著高于FPH、RF及PP组(P0.05); 饲料干物质和蛋白质消化率在UF、FPH及RF组显著高于PP组(P0.05), 但显著低于FM组(P0.05), 在UF组显著高于FPH和RF组(P0.05); 不同处理对饲料氨基酸和牛磺酸的消化率均产生显著影响(P0.05), 趋势为FM组最高, 其次为UF组, PP组最低; 半胱氨酸和牛磺酸的消化率在添加水解鱼蛋白的3组(UF、FPH和RF组)和不添加水解鱼蛋白的2组(FM和PP组)呈相反的趋势。上述结果表明, 在高植物蛋白饲料中添加低分子量水解鱼蛋白(UF), 大菱鲆幼鱼的生长和饲料利用有升高的趋势, 但UF、FPH以及RF都显著提高了大菱鲆对饲料干物质、蛋白质和氨基酸的消化率, 且UF效果优于FPH和RF。此外, 添加不同分子量水解鱼蛋白都降低了牛磺酸的消化率。
    Abstract: In this study, we investigated whether and how the molecular weight of fish protein hydrolysate in the plant-protein diets would affect the digestive ability of juvenile turbot (Scophthalmus maximus L). The 68-day experi-ments were conducted on fish with initial weight of (16.050.03) g. Five groups of diets (UF, FPH, RF, PP, and FM) were formulated to be isolipidic, isonitrogenous and isoenergetic. UF (ultrafiltered fish protein hydrolysate), FPH (fish protein hydrolysate) and RF (retentate fish protein hydrolysate) contained 5.4%, 5.5% and 5.5% of protein hydrolysates respectively (10% of total dietary protein). PP contained zero protein hydrolysate. Fish meal consisted of 18% of the diets in UF, FPH, RF, and PP, and it was the sole protein source in the control diet (FM). The special growth rates of fish fed with UF (UF fish), FPH and PP were not significantly different from FM fish (P0.05). There was also no difference in feed efficiency (FE), protein efficiency ratio (PER), or protein productive value (PPV) between UF fish and FM fish (P0.05). However FPH fish, RF fish, and PP fish displayed significantly lower FE, PER and PPV than FM fish did (P0.05). The apparent digestibility coefficients (ADC) for the dry matter and protein of UF, FPH and RF fish were significantly higher than that of PP fish (P0.05), but lower than that of FM fish (P0.05). Between UF, FPH, and RF fish, the ADC for the dry matter and protein of UF was significantly higher than that of the latter two (P0.05). The ADCs for 16 amino acids and taurine could be obviously affected by different dietary treatments (P0.05). For most amino acids the ADC was the highest in FM fish and the lowest in PP fish among all the groups. The ADCs for cysteine and taurine exhibited opposite patterns between the fish protein hydrolysates-containing groups (UF, FPH and RF) and the fish protein hydrolysates-lacking groups (FM and PP). In conclusion, addition of UF and FPH to the high plant pro-tein diets could help increase the growth and feed utilization of the juvenile turbot; the ACD for dry matter, protein, and amino acids could be improved with FPH and UF; compared to FPH and RF, the low molecular weight UF could be more effective to improve the growth. However, it seemed that the fish protein hydrolysate might reduce the ACD for taurine.
  • [1]

    FAO. The State of World Fisheries and Aquaculture [M]. Rome: FAO Press. 2012, 24

    [2]

    Tacon A G J, Metian M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects [J]. Aquaculture, 2008, 285(1-4): 146-158

    [3]

    Collins S A, Desai A R, Mansfield G S, et al. The effect of increasing inclusion rates of soybean, pea and canola meals and their protein concentrates on the growth of rainbow trout: Concepts in diet formulation and experimental design for ingredient evaluation [J]. Aquaculture, 2012, 344-349: 90-99

    [4]

    Snyder G S, Gaylord T G, Frederic T, et al. Effects of carnosine supplementation to an all-plant protein diet for rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 2012, 338-341: 72-81

    [5]

    Hardy R W, Higgs D A, Lall S P, et al. Alternative Dietary Protein and Lipid Sources for Sustainable Production of Salmonids [M]. Havforskningsinstituttet. 2001, 44

    [6]

    Liaset B, Lied E, Espe M. Enzymatic hydrolysis of by-products from the fish-filleting industry; chemical characterization and nutritional evaluation [J]. Journal of the Science of Food and Agriculture, 2000, 80(5): 581-589

    [7]

    Mach D T N, Nortvedt R. Free amino acid distribution in plasma and liver of juvenile cabia (Rachycentron canadum) fed increased levels of lizardfish silage [J]. Aquaculture Nutrition, 2011, 17(2): 644-656

    [8]

    Espe M, Sveier H, Hogoy I, et al. Nutrient absorption and growth of Atlantic salmon (Salmo salar L.) fed fish protein concentrate [J]. Aquaculture, 1999, 174(1-2): 119-137

    [9]

    Zheng K, Liang M, Yao H, et al. Effect of dietary fish protein hydrolysate on growth, feed utilization and IGF-I levels of Japanese flounder (Paralichthys olivaceus) [J]. Aquaculture Nutrition, 2012, 18(3): 297-303

    [10]

    Kousoulaki K, Albrektsen S, Langmyhr E, et al. The water soluble fraction in fish meal (stickwater) stimulates growth in Atlantic salmon (Salmo salar L.) given high plant protein diets [J]. Aquaculture, 2009, 289(1): 74-83

    [11]

    Espe M, Ruohonen K, El-Mowafi A. Hydrolysed fish protein concentrate (FPC) reduces viscera mass in Atlantic salmon (Salmo salar) fed plant-protein-based diets [J]. Aquaculture Nutrition, 2012, 18(6): 599-609

    [12]

    Kousoulaki K, Olsen H J, Albrektsen S, et al. High growth rates in Atlantic salmon (Salmo salar L.) fed 7.5% fish meal in the diet. Micro-, ultra- and nano-filtration of stickwater and effects of different fractions and compounds on pellet quality and fish performance [J]. Aquaculture, 2012, 338-341: 134-146

    [13]

    Zheng K K, Liang M Q, Yao H B, et al. Inclusion of size-fractionated fish protein hydrolysate in high plant protein diets for Japanese flounder, Paralichthys olivaceus [J]. Acta Hydrobiologica Sinica, 2011, 35(5): 829-834 [郑珂珂, 梁萌青, 姚洪波, 等. 在高植物蛋白饲料中添加水解鱼蛋白对牙鲆幼鱼的影响. 水生生物学报, 2011, 35(5): 829-834]

    [14]

    Luo Y W, Ai Q H, Mai K S, et al. Effects of dietary rapeseed meal on growth performance, digestion and protein metabolism in relation to gene expression of juvenile cobia (Rachycentron canadum) [J]. Aquaculture, 2012, 368-369: 109-116

    [15]

    Sugiura S H, Dong F M, Rathbone C K, et al. Apparent protein digestibility and mineral availabilities in various feed ingredients for salmonid feeds [J]. Aquaculture, 1998, 159(3-4): 177-202

    [16]

    Adler-Nissen J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid [J]. Journal of Agricultural and Food Chemistry, 1979, 27(6): 1256-1262

    [17]

    Liu X D, Liang M Q, Zhang L M, et al. Effect of fish protein hydrolysate levels on growth performance and biological and physiological parameters in tongue sole post-larvae [J]. Acta Hydrobiologica Sinica, 2010, 34(2): 242-249 [柳旭东, 梁萌青, 张利民, 等. 饲料中添加水解鱼蛋白对半滑舌鳎稚鱼生长及生理生化指标的影响. 水生生物学报, 2010, 34(2): 242-249]

    [18]

    Olivia-Teles A, Cerqueira A L, Goncalves P. The utilization of diets containing fish protein hydrolysate by turbot (Scophtalmus maximus) juveniles [J]. Aquaculture, 1999, 179(1): 195-201

    [19]

    Zheng, K, Liang M, Yao H, et al. Effect of size-fractionated fish protein hydrolysate on growth and feed utilization of turbot (Scophthalmus maximus L.) [J]. Aquaculture Research, 2013, 44(6): 895-902

    [20]

    Fournier V, Huelvan C, Desbruyeres E. Incorporation of a mixture of plant feedstuffs as substitute for fish meal in diets of juvenile turbot (Psetta maxima) [J]. Aquaculture, 2004, 236(1): 451-465

    [21]

    Kaushik S J. Whole body amino acid composition of European seabass (Dicentrarchus labrax), gilthead seabream (Sparus aurata) and turbot (Psetta maxima) with an estimation of their IAA requirement profiles [J]. Aquatic Living Resources, 1998, 11: 355-358.

    [22]

    Qi G, Ai Q H, Mai K S, et al. Effects of dietary taurine supplementation to a casein-based diet on growth performance and taurine distribution in two sizes of juvenile turbot (Scophthalmus maximus L.) [J]. Aquaculture, 2012, 358-359: 122-128

    [23]

    Aksnes A, Hope B, Høstmark Ø, et al. Inclusion level of size fractionated fish hydrolysate in high plant protein diets for Atlantic cod, Gadus morhua [J]. Aquaculture, 2006b, 261(3): 1102-1110

    [24]

    Aksnes A, Hope B, Jönsson E, et al. Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncor-hynchus mykiss) fed high plant protein diets. I: growth, growth regulation and feed utilization [J]. Aquaculture, 2006c, 261(1): 305-317

    [25]

    Goto T, Tiba K, Sakurada Y, et al. Determination of hepatic cysteinesulfinate decarboxylase activity in fish by means of OPA-prelabeling and reverse-phase high-performance liquid chromatographic separation [J]. Fisheries Science, 2001, 67(3): 553-555

    [26]

    Goto T, Matsumoto T, Murakami S. Conversion of cysteate into taurine in liver of fish [J]. Fisheries Science, 2003, 69(1): 2l6-2l8

    [27]

    Kuzmina V V, Gavrovskaya L K, Ryzhova O V. Taurine. Effect on exotrophia and metabolism in mammals and fish [J]. Journal of Evolutionary Biochemistry and Physiology, 2012, 46(1): 19-27

  • 期刊类型引用(11)

    1. 刘晋士,卫育良,徐后国,朱永祥,梁萌青. 大菱鲆利用水解鱼蛋白和牛蛙蛋白的差异. 水产学报. 2023(04): 122-133 . 百度学术
    2. 蒋昊,王旋,刘成栋,周慧慧,麦康森,何艮. 不同含量水解鱼蛋白添加对大菱鲆幼鱼生长、血浆和肌肉游离氨基酸含量及后肠组织形态的影响. 中国海洋大学学报(自然科学版). 2022(03): 40-51 . 百度学术
    3. 宋紫菱,杨烜懿,赵旭民,王光辉,迟淑艳. 酶解鸡肉粉替代部分鱼粉对珍珠龙胆石斑鱼生长性能、营养物质表观消化率以及养殖水体水质的影响. 动物营养学报. 2021(11): 6349-6365 . 百度学术
    4. 姜立生,陈玮,李宝山,孙永智,王际英,黄炳山,王世信. 水解蛋白替代鱼粉对大菱鲆生长及生理代谢的影响. 海洋渔业. 2019(05): 596-605 . 百度学术
    5. 李本相,卫育良,梁萌青,徐后国,曲江波. 水解鱼蛋白对大菱鲆生长、体组成及肌纤维组织形态结构的影响. 渔业科学进展. 2019(05): 155-165 . 百度学术
    6. 王建,曾本和,徐兆利,张忭忭,刘海平,王万良,王金林,周建设,黄莉萍. 饲料蛋白水平对拉萨裸裂尻幼鱼肠道和肝脏的消化酶活性及组织结构的影响. 南方水产科学. 2019(06): 112-119 . 百度学术
    7. 牟玉超,柳茜,卫育良,梁萌青,郑珂珂,徐后国. 饲料中添加两种蛋白水解物对大菱鲆(Scophthalmus maximus L.)幼鱼生长性能及肠道组织学结构的影响. 渔业科学进展. 2017(02): 83-90 . 百度学术
    8. 曹林,张婷婷,徐后国,郑珂珂,梁萌青. 饲料中不同水解蛋白对鲈鱼(Lateolabrax japonicus)幼鱼鱼体及组织脂肪含量的影响. 渔业科学进展. 2017(03): 86-95 . 百度学术
    9. 张莉莉,梁萌青,徐后国,柳茜,郑珂珂. 饲料中添加磷虾水解物对大菱鲆幼鱼生长性能、体组成及相关酶活性的影响. 水生生物学报. 2017(03): 497-505 . 本站查看
    10. 杨小林,曾学平,曾庆祥,张建铭,黄雅贞,刘斌,张家海,刘德亭,刘小全. 鳙鱼与草鱼肝体系数检测分析. 现代农业科技. 2016(13): 270-272 . 百度学术
    11. 牟玉超,梁萌青,郑珂珂,卫育良. 高植物蛋白饲料中不同水平低分子水解鱼蛋白对大菱鲆(Scophthalmus maximus L.)幼鱼生长及肝脏IGF-I受体表达的影响. 渔业科学进展. 2016(03): 49-57 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  1336
  • HTML全文浏览量:  2
  • PDF下载量:  887
  • 被引次数: 21
出版历程
  • 收稿日期:  2013-05-09
  • 修回日期:  2013-12-06
  • 发布日期:  2014-09-24

目录

    /

    返回文章
    返回