鱼类和哺乳类TLR4基因结构和功能的保守与进化
CONSERVATIVE AND EVOLUTION OF TLR4'S GENE STRUCTURE AND FUNCTION IN FISH AND MAMMALIAN
-
摘要: 先天性免疫是生物体第一道免疫防线, 存在于各种多细胞生物中。Toll样受体(Toll-like receptors, TLRs)是介导机体对病原体相关的分子模式(Pathogen-associated molecular patterns, PAMPs)识别的一类模式识别受体(pattern recognition receptors, PPRs), 在先天性免疫中发挥重要作用。TLR4是toll家族成员之一, 哺乳类中主要负责识别细菌的脂多糖(lipopolysaccharide, LPS)。文章就TLR4的发现历史, TLR4在鱼类和哺乳类中的结构特点, TLR4的分布特征, 鱼类和哺乳类中TLR4识别配体的差异, TLR4的信号传导以及TLR4的进化进行了综述。综述将对TLR相关研究提供借鉴和参考。Abstract: Innate immunity is the first defense of organisms, which exist in all kinds of multicellular organism. Toll-like receptors (TLRs) is aclass of Pattern recognition receptors (PRRs) that involved in the recognition of pathogen-associated molecular patterns (PAMPs) and played an important role in innate immunity. In regard to TLR4, which is a member of TLRs and could recognize the lipopolysaccharide (LPS) in bacterial. In the study, the found history of TLR4, structural features of TLR4 in mammalians and fish, distribution of TLR4, difference of TLR4 in mammalians and fish, signaling transmission, and the evolution of TLR4 were reviewed. This summary in the study would provide a reference for the research of TLR.
-
Keywords:
- TLR4 /
- Signal transduction pathway /
- LPS /
- Evolution
-
-
[1] Janeway CA Jr, Medzhitov R. Innate immune recognition [J]. Annual Review of Immunology, 2002, 20: 197216
[2] Horng T, Barton G M, Medzhitov R. TIRAP: an adapter molecule in the Toll signaling pathway [J]. Nature Immunology, 2001, 2(9): 835841
[3] Medzhitov R, Janeway CA Jr. Innate immunity: impact on the adaptive immune response [J]. Current Opinion in Immunology, 1997, 9(1): 49
[4] Medzhitov R, Janeway CA Jr. Innate immunity: the virtues of a nonclonal system of recognition [J]. Cell, 1997, 91(3): 295298
[5] Rutz M, Metzger J, Gellert T, et al. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence-and pH-dependent manner [J]. European Journal of Immunology, 2004, 34(9): 25412550
[6] Takeda K, Akira S. Toll receptors and pathogen resistance [J]. Cellular Microbiology, 2003, 5(3): 143153
[7] Temperley N D, Berlin S, Paton I R, et al. Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss [J]. BMC Genomics, 2008, 9: 62
[8] Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the drosophila toll protein signals activation of adaptive immunity [J]. Nature, 1997, 388(6640): 394397
[9] Nsslein-Volhard C, Lohs-Schardin M, Sander K, et al. A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of dorsophil [J]. Nature, 1980, 283(5746): 474476
[10] Steward R, McNally F J, Schedl P, et al. Isolation of the dorsal locus of drosophila [J]. Nature, 1984, 311(5983): 262265
[11] Anderson K V, Jrgens G, Nsslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: Genetic studies on the role of the Toll gene product [J]. Cell, 1985, 42(3): 779789
[12] Gay N J, Keith F J. Drosophila toll and IL-1 receptor [J]. Nature, 1991, 351(6325): 355356
[13] Nomura N, Miyajima N, Sazuka T, et al. Prediction of the coding sequences of unidentified human genes [J]. DNA Research, 1994, 1(1): 2735
[14] Taguchi T, Mitcham J L, Dower S K, et al. Chromosomal localization of TIL, a gene encoding a protein related to the Drosophila transmembrane receptor Toll, to human chromosome 4p14 [J]. Genomics, 1996, 32(3): 486488
[15] Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette sptzle/Toll/cactus controls the potent antifungal response in Drosophila adults [J]. Cell, 1996, 86(6): 973983
[16] Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene [J]. Science, 1998, 282(5396): 20852088
[17] Chow J C, Young D W, Golenbock D T. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction [J]. The Journal of Biological Chemistry, 1999, 274(16): 1068910692
[18] Hoshino K, Takeuchi O, Kawai T, et al. Cutting edge: toll-like receptor4 (TLR4)-dficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product [J]. The Journal of Immunology, 1999, 162(7): 37493752
[19] Leveque G, Forgetta V, Morroll S, et al. Allelic variation in TLR4 is linked to susceptibility to salmonella enteric serovar typhimurium infection in chickens [J]. Infection and Immunity, 2003, 71(3): 11161124
[20] Jault C, Pichon L, Chluba J. Toll-like receptor gene family and TIR-domainadapters in Danio rerio [J]. Molecular Immunology, 2004, 40(11): 759771
[21] Meijer A H, Gabby Krens S F, Medina Rodriguez I A, et al. Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish [J]. Molecular Immunology, 2004, 40(11): 773783
[22] Sullivan C, Charette J, Catchen J, et al. The gene history of zebrafish tlr4a and tlr4b is predictive of their divergent functions [J]. The Journal of Immunology, 2009, 183(9): 58965908
[23] Huang R, Dong F, Jang S, et al. Isolation and analysis of a novel grass carp toll-like receptor 4 (tlr4) gene cluster involved in the response to grass carp reovirus [J]. Developmental Comparative Immunology, 2012, 38(2): 383388
[24] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity [J]. Cell, 2006, 124(4): 783801
[25] Bowie A, O'Neill L A. The interleukin-1 receptor/ Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products [J]. Journal of Leukocyte Biology, 2000, 67(4): 508514
[26] Martin M U, Wesche H. Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family [J]. Biochimica et Biophysica Acta, 2002, 1592(3): 265280
[27] Choe J, Kelker M S, Wilson I A. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain [J]. Science, 2005, 309(5734): 581585
[28] Song P I, Abraham T A, Park Y, et al. The expression of functional LPS receptor proteins CD14 and toll-like receptor 4 in human corneal cells [J]. Ophthalmology Visual, 2001, 42(12): 28672877
[29] Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells [J]. The Journal of Immunology, 2000, 164(11): 59986004
[30] Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition [J]. Clinical Microbiology Reviews, 2003, 16(4): 637646
[31] Roach J C, Glusman G, Rowen L, et al. The evolution of vertebrate Toll-like receptors [J]. Proceeding of the National Academy Sciences of the United States of America, 2005, 102(27): 95779582
[32] Hughes A L, Piontkivska H. Functional diversification of the toll-like receptor gene family [J]. Immunogenetics, 2008, 60(5): 249256
[33] Leulier F, Lemaitre B. Toll-like receptors-taking an evolutionary approach [J]. Nature Reviews Genetics, 2008, 9(3): 165178
[34] Temperley N D, Berlin S, Paton I R, et al. Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss [J]. BMC Genomics, 2008, 9: 62
[35] Huang Y, Temperley N D, Ren L, et al. Molecular evolution of the vertebrate TLR1 gene family-a complex history of gene duplication, gene conversion, positive selection and co-evolution [J]. BMC Evolutionary Biology, 2011, 11: 149
[36] Barreiro L B, Ben-Ali M, Quach H, et al. Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense [J]. PLoS Genet, 2009, 5(7): e1000562
[37] Beg A A. Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses [J]. Trends in Immunology, 2002, 23(11): 509512
[38] Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease [J]. Nature Reviews Immunology, 2006, 6(11): 823835
[39] Huber M, Kalis C, Keck S, et al. R-form LPS, the master key to the activation of TLR4/MD-2-positive cells [J]. European Journal of Immunology, 2006, 36(3): 701711
[40] Wang K Y, Huang J L, Xiao D, et al. The immunoprotection of stenotrophomonas maltophilia lipopolysaccharide in channel catfish [J]. Acta Hydrobiologica Sinica, 2012, 36(3): 433440 [汪开毓, 黄锦炉, 肖丹, 等. 嗜麦芽寡养单胞菌脂多糖对斑点叉尾 免疫保护作用. 水生生物学报, 2012, 36(3): 433440]
[41] Yang R B, Mark M R, Gray A, et al. Toll-like receptor-2mediates lipopolysaccharide-induced cellular signaling [J]. Nature, 1998, 395(6699): 284288
[42] Kawata T, Bristol J R, Rose J R, et al. Anti-endotoxin activity of a novel synthetic lipid A analog [J]. Progress in Clinical and Biological Research, 1995, 392: 499509
[43] Park B S, Song D H, Kim H M, et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex [J]. Nature, 2009, 458: 11911195
[44] Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4 [J]. The Journal of Experimental Medicine, 1999, 189(11): 17771782
[45] Lu Y C, Ye W C, Ohashi P S. LPS/TLR4 signal transduction pathway [J]. Cytokine, 2008, 42(2): 145151
[46] Dauphinee S M, Karsan A. Lipopolysaccharide signaling in endothelial cells [J]. Laboratory Investigation, 2006, 86(1): 922
[47] Berczi I, Bertok L, Bereznai T. Comparative studies on the toxicity of Escherichia coli lipopolysaccharide endotoxin in various animal species [J]. Canadian Journal of Microbiology, 1966, 12(5): 10701071
[48] Sepulcre M P, Lpez-Castejn G, Meseguer J, et al. The activation of gilthead seabream professional phagocytes by different PAMPs underlines the behavioural diversity of the main innate immune cells of bony fish [J]. Molecular Immunology, 2007, 44(8): 20092016
[49] Pelegrn P, Garca-Castillo J, Mulero V, et al. Interleukin-1isolated from a marine fish reveals up-regulated expression in macrophages following activation with lipopolysaccharide and lymphokines [J]. Cytokine, 2001, 16(2): 6772
[50] MacKenzie S, Planas J V, Goetz F W. LPS-stimulated expression of a tumor necrosis factor mRNA in primary trout monocytes and in vitro differentiated macrophages [J]. Developmental Comparative Immunology, 2003, 27(5): 393400
[51] Stafford J L, Ellestad K K, Magor K E, et al. A Toll-like receptor (TLR) gene that is up-regulated in activated goldfish mac-rophages [J]. Developmental Comparative Immunology, 2003, 27(8): 685698
[52] Zou J, Tafalla C, Truckle J. Identification of a second group of type I IFNs in fish sheds light on IFN evolution in vertebrates [J]. The Journal of Immunology, 2007, 179(6): 38593871
[53] Sullivan C, Charette J, Catchen J, et al. The gene history of zebrafish tlr4a and tlr4b is predictive of their divergent functions [J]. The Journal of Immunology, 2009, 183(9): 58965908
[54] Liu Y, Li M, Fan S, et al. A unique feature of Toll/IL-1 receptor domain-containing adaptor protein is partially responsible for lipopolysaccharide insensitivity in zebrafish with a highly conserved function of MyD88 [J]. The Journal of Immunology, 2010, 185(6): 33913400
[55] Meng Z, Zhang X Y, Guo J, et al. Scavenger receptor in fish is a lipopolysaccharide recognition molecule involved in negative regulation of NF-B activation by competing with TNF receptor-associated factor 2 recruitment into the TNF- signaling pathway [J]. The Journal of Immunology, 2012, 189(8): 40244039
[56] Kurt-Jones E A, Popova L, Kwinn L, et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus [J]. Nature Immunology, 2000, 1: 398401
[57] Haynes L M, Moore D D, Kurt-Jones E A, et al. Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus [J]. Journal of Virology, 2001, 75(22): 1073010737
[58] Rassa J C, Meyers J L, Zhang Y M, et al. Murine retroviruses activate B cells via interaction with toll-like receptor 4 [J]. PNAS, 2002, 99(4): 22812286
[59] Su J G, Yang C R, Xiong F, et al. Toll-like receptor 4 signaling pathway can be triggered by grass carp reovirus and Aeromonashydrophila infection in rare minnow Gobiocyprisrarus [J]. Fish Shellfish Immunology, 2009, 27(1): 3339
[60] Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity [J]. Biochemical and Biophysical Research Communications, 2009, 388(4): 621762
[61] Sharma S, TenOever B R, Grandvaux N, et al. Triggering the interferon antiviral response through an ikk-related pathway [J]. Science, 2003, 300(5622): 1148211451
[62] Yamamoto M, Takeda K. Current views of toll-like receptor signaling pathways [J]. Gastroenterology Research and Practice, 2010, 2010: 240365
[63] Fitzqerald K A, Rowe D C, Barnes D J, et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF [J]. The Journal of Experimental Medicine, 2003, 198(7): 10431055
[64] Oshiumi H, Matsumoto M, Funami K, et al. TICAM-1, an adaptor molecule that participates in Toll-like receptor3-mediated interferon-beta induction [J]. Nature Immunology, 2003, 4(2): 161167
[65] Ashley M, Elizabeth B, Jodee A, et al. Mal interacts with tumor necrosis factor receptor-associated factor(TRAF)-6 to mediate NF-kappaB activation by toll-like receptor (TLR)-2 and TLR4 [J]. The Journal of Biological Chemistry, 2004, 279(36): 3722737230
[66] Cao Z, Xiong J, Takeuchi M, et al. TRAF6 is a signal transducer for interleukin-1 [J]. Nature, 1996, 383(6599): 443446
[67] Doyle S L, O'Neill L A. Toll-like receptors: from the discovery of NF-kappaB to new insights into transcriptional regulations in innate immunity [J]. Biochemical Pharmacology, 2006, 72(9): 11021113
[68] Brikos C, O'Neill L A. Signalling of toll-like receptors [J]. Handbook of Experimental Pharmacology, 2008, 183: 2150
[69] Fitzgerald K A, Palsson-McDermott E M, Bowie A G, et al. Mal(MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction [J]. Nature, 2001, 413(6851): 7883
[70] Oshiumi H, Sasai M, Shida K, et al. TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-beta [J]. The Journal of Biological Chemistry, 2003, 278(50): 4975149762
[71] Chen J S, Wang T Y, Wang D, et al. Evidence for positive selection in the TLR9 gene of teleosts [J]. Fish Shellfish Immunology, 2008, 24(2): 234242
[72] Nakajima T, Ohtani H, Satta Y, et al. Natural selection in the TLR-related genes in the course of primate evolution [J]. Immunogenetics, 2008, 60(12): 727735
[73] Mikami T, Miyashita H, Takatsuka S, et al. Molecular evolution of vertebrate Toll-like receptors: Evolutionary rate difference between their leucine-rich repeats and their TIR domains [J]. Gene, 2012, 503(2): 235243
[74] Forn?skov A, Vinkler M, Pags M, et al. Contrasted evolutionary histories of two Toll-like receptors (Tlr4 and Tlr7) in wild rodents (MURINAE) [J]. BMC Evolutionary Biology, 2013, 13: 194
[75] Pujol N, Link E M, Liu L K, et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditiselegans [J]. Current Biology, 2001, 11: 809821
[76] Putnam N H, Putnam N H, Srivastava M, et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization [J]. Science, 2007, 317(5834): 8694
[77] Zheng L, Zhang L, Lin H, et al. Toll-like receptors in invertebrate innate immunity [J]. Invertebrate Survival Journal, 2005, 2: 105113
[78] Azumi K, Santis R D, Tomaso A D, et al. Genomic analysis of immunity in a Urochordate and the emergence of the vertebrate immune system: waiting for Godot [J]. Immunogenetics, 2003, 55(8): 570581
[79] Kasamatsua J, Oshiumi H, Matsumotoa M, et al. Phylogenetic and expression analysis of lamprey toll-like receptors [J]. Developmental Comparative Immunology, 2010, 34(8): 855865
[80] Zhang J, Liu S, Rajendran K V, et al. Pathogen recognition receptors in channel catfish: III Phylogeny and expression analysis of Toll-like receptors [J]. Developmental Comparative Immunology, 2013, 40(2): 185194
[81] Oshiumi H, Tsujita T, Shida K, et al. Prediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugurubripes, genome [J]. Immunogenetics, 2003, 54(11): 791800
[82] Baoprasertkul P, Xu P, Peatman E, et al. Divergent Toll-like receptors in catfish (Ictalurus punctatus): TLR5S, TLR20, TLR21 [J]. Fish Shellfish Immunology, 2007, 23(6): 12181230
[83] Sepulcre M P, Alcaraz-Prez F, Lpez-Muoz A, et al. Evolution of lipopolysaccharide (lps) recognition and signaling: fish TLR4 does not recognize lps and negatively regulates NF-kappaB activation [J]. The Journal of Immunology, 2009, 182(4): 18361845
[84] Rebl A, Goldammer T, Seyfert H M. Toll-like receptor signaling in bony fish [J]. Veterinary Immunology and Immunopathology, 2010, 134(34): 139150
[85] Meng J, Gong M, Bjrkbacka H, et al. Genome-wide expression profiling and mutagenesis studies reveal that lipopolysaccharide responsiveness appears to be absolutely dependent on TLR4 and MD-2 expression and is dependent upon intermolecular ionic interactions [J]. The Journal of Immunology, 2011, 187(7): 36833693
计量
- 文章访问数: 2561
- HTML全文浏览量: 6
- PDF下载量: 1065