嗜水气单胞菌cpxRA缺失株构建及生物学特性研究

张兰梨, 张倩倩, 陈辉, 王谢昊, 吴振兵, 冯宇晴, 李爱华

张兰梨, 张倩倩, 陈辉, 王谢昊, 吴振兵, 冯宇晴, 李爱华. 嗜水气单胞菌cpxRA缺失株构建及生物学特性研究[J]. 水生生物学报, 2018, 42(1): 1-10. DOI: 10.7541/2018.001
引用本文: 张兰梨, 张倩倩, 陈辉, 王谢昊, 吴振兵, 冯宇晴, 李爱华. 嗜水气单胞菌cpxRA缺失株构建及生物学特性研究[J]. 水生生物学报, 2018, 42(1): 1-10. DOI: 10.7541/2018.001
Lan-Li ZHANG, Qian-Qian ZHANG, Hui CHEN, Xie-Hao WANG, Zhen-Bing WU, Yu-Qing FENG, Ai-Hua LI. CONSTRUCTION AND BIOLOGICAL CHARACTERISTICS ANALYSIS OF CPXRA MUTANT IN AEROMONAS HYDROPHILA[J]. ACTA HYDROBIOLOGICA SINICA, 2018, 42(1): 1-10. DOI: 10.7541/2018.001
Citation: Lan-Li ZHANG, Qian-Qian ZHANG, Hui CHEN, Xie-Hao WANG, Zhen-Bing WU, Yu-Qing FENG, Ai-Hua LI. CONSTRUCTION AND BIOLOGICAL CHARACTERISTICS ANALYSIS OF CPXRA MUTANT IN AEROMONAS HYDROPHILA[J]. ACTA HYDROBIOLOGICA SINICA, 2018, 42(1): 1-10. DOI: 10.7541/2018.001

嗜水气单胞菌cpxRA缺失株构建及生物学特性研究

详细信息
    作者简介:

    张兰梨(1991—), 女, 湖北孝感人; 硕士研究生; 主要研究方向为细菌病理学。E-mail: zhanglanli9999@163.com

    通信作者:

    陈辉, E-mail: chenhuijsbf@163.com

    李爱华, E-mail: liaihua@ihb.ac.cn

  • 中图分类号: S941.4

CONSTRUCTION AND BIOLOGICAL CHARACTERISTICS ANALYSIS OF CPXRA MUTANT IN AEROMONAS HYDROPHILA

    Corresponding author:
  • 摘要: 为了探讨Cpx系统在嗜水气单胞菌生长及毒力等方面发挥的作用, 利用融合PCR和基因同源重组原理, 以自杀质粒pRE112为载体构建缺失57—1879 bp序列的cpxR-A基因簇突变株 Δcpx, 然后比较缺失株和野生株在生长、生物膜形成、应激耐受及毒力等生物学特性方面的差异。普通PCR及荧光定量PCR结果验证了突变株中cpxRA基因簇片段的部分缺失, 表明突变株构建成功; 生物学特性研究结果显示, 突变株在形态、生长、生物膜形成及毒力等方面与野生株没有显著差异, 两者主要在应对高渗透压、SDS (十二烷基磺酸钠)刺激及含有EDTA (乙二胺四乙酸二钠)或多黏菌素B环境表现不同。结果表明Cpx双组分系统在嗜水气单胞菌应对外界刺激方面扮演着重要角色, 但在毒力方面则可能处于次要地位。
    Abstract: To investigate the roles of two Cpx component systems in the growth and virulence of Aeromonas hydrophila, we constructed the cpxRA gene cluster mutant Δcpx with the deletion of 57—1879 bp using suicide plasmid pRE112 as the vector. This procedure was based on fusion PCR and gene homologous recombination principles. Through electrophoresis and fluorescence quantitative PCR, the partial deletion of the cpxRA gene cluster in the mutant was confirmed. Then we compared the differences between mutant and wild strains in biological characteristics including growth, biofilm formation, stress tolerance and virulence. The results showed that the mutant had no significant difference with the wild strain in morphology, growth, biofilm formation and virulence. The main differences existed in the response to high osmotic pressure, SDS (Sodium dodecyl sulfate), EDTA (Ethylene Diamine Tetraacetic Acid) and polymyxin B stimulation. This study reveals that the Cpx system of Aeromonas hydrophila is involved in the response to external stimulus factors, and plays a relatively minor role in virulence.
  • 图  1   cpxR-A基因缺失株的构建过程

    Figure  1.   Construction of cpxR-A mutant strain

    图  2   基因缺失株的构建和鉴定

    图A中, M1. DL2000 Marker; 1、2. 上游片段F1; 3、4. 下游片段F2; 5、6.融合片段F1F2; 图B中, 1—3是重组质粒pRE-Δcpx双酶切的3个重复, M1. DL2000 Marker; 图C中, M1. DL2000 Marker; M2. DL5000 Marker; 1—4. 以cpx-incheckF/R为引物PCR扩增; 5—8. 以cpx-5O/3O为引物PCR扩增; 9—12. 以cpx-outcheckF/R为引物PCR扩增; 1、2、5、6、9、10. 以野生株基因组为模板PCR扩增; 3、4、7、8、11、12.以突变株基因组为模板PCR扩增

    Figure  2.   Construction and identification of cpxRA mutant strain

    Fig. A: M1. DL2000 Marker; 1, 2. Upstream fragment F1; 3, 4. downstream fragment F2; 5, 6. fusion fragment F1F2; Fig.B: 1—3. recombination plasmid pRE-Δcpx; M1. DL2000 Marker; Fig.C: M1. DL2000 Marker; M2. DL5000 Marker; 1—4. PCR amplification using cpx-incheckF/R as primers; 5—8. PCR amplification using cpx-5O/3O as primers; 9—12. PCR amplification using cpx-outcheckF/R as primers; 1, 2, 5, 6, 9, 10. PCR amplification using wild strain genome as template; 3, 4, 7, 8, 11, 12. PCR amplification using mutant genome as template

    图  3   互补株的鉴定

    1—3. 以待鉴定菌株基因组为模板PCR扩增; G. 以野生株基因组为模板PCR扩增; Δ.以突变株基因组为模板PCR扩增; p. 以互补质粒pACYC-CΔcpx为模板PCR扩增; M. DL5000/2000 Marker

    Figure  3.   Identification of cpxRA complementary strain

    1—3. PCR amplification using candidate strains genome as template; G. PCR amplification using wild strain genome as template; Δ. PCR amplification using mutant genome as template; p. PCR amplification using complement plasmid pACYC-CΔcpx as template; M. DL5000/2000 Marker

    图  4   菌株扫描电镜图

    Figure  4.   SEM images of strains

    图  5   菌株的生长曲线及泳动直径

    Figure  5.   The growth curve of strains and motility assays

    图  6   生物膜形成能力

    Figure  6.   The assay of biofilm formation

    图  7   不同急性刺激下菌株存活率

    Figure  7.   The survival of strains in different acute stimulus

    图  8   在不同刺激下菌株的生长曲线

    Figure  8.   The growth curve of strains in different stimulus

    图  9   斑马鱼浸泡攻毒累积存活曲线

    Figure  9.   The survival curve of zebrafish attacked by Aeromonas hydrophila strains soak

    图  10   相关基因表达量变化

    Figure  10.   Related genes expression level

    图  11   加入EDTA诱导剂后菌株荧光定量结果

    Figure  11.   The result of qRT-PCR after EDTA induction

    表  1   本研究中使用的引物

    Table  1   Primers used in this study

    引物Primers序列Sequences (5′—3′)用途Usage
    cpx-5O  CGCTCTAGACAGGTCGGAGCGGTAGTAmplification of up-stream of gene cpxR:F1
    cpx-5I  CGAAAGAAGGGCAGGAACTCGGTGAGCAACTGGGT
    cpx-3O  CCCGGTACCTTGGTGGTACAGGCGAATAmplification of down-stream of gene cpxA:F2
    cpx-3I  ACCCAGTTGCTCACCGAGTTCCTGCCCTTCTTTCG
    cpx-incheck-F  TTGAGCAGGGAGGAGATGIdentification of cpxRA mutant
    cpx-incheck-R  TGTCATCCCACTCAAACCC
    cpx-outcheck-F  AGACCTCCTCCTGACCTIdentification of cpxRA mutant
    cpx-outcheck-R  TGCACCGATTCATAGC
    PRE-check-F  TTCGTCTCAGCCAATCSequencing the recombinant plasmid pRE-Δcpx
    pRE-check-R  TGGTGCGTACCGGGTTG
    com-F  CCCAAGCTTGGTAATCAGCAGGGTGGCConstruction of cpxRA complementary strain
    com-R  GTGAGCATGCGAGTCTGCTCAGCCGATG
    注: 引物序列下划线部分表示酶切位点Note: The underline primer sequence represents restriction site
    下载: 导出CSV

    表  2   荧光定量PCR引物

    Table  2   Primers used in qRT-PCR

    引物编号
    Primers
    引物序列
    Sequences (5′—3′)
    编码基因
    CDS
    cpxR-FGCTGCTGGACGTGATGATGCCpxR
    cpxR-RCGTTGACCCGATCCTGGC
    cpxA_FGCTGTTGCTGGTGGTGGCCpxA
    cpxA-RAATCCTGATTGGGGTCTG
    16s-FCAACCCCTGTCCTTTGTT16S rRNA
    16s-RTTTGGGATTCGCTCACTA
    alt-FTGCTGGAGCTGAGCTTTGAlt
    alt-RCTGTCCTTGAGGGAGTCG
    hly-FGATGGCATCGGTGGCATAHly
    hly-RCGCTGGACGAAGAGTCGG
    aer-FTAACCCGGCCCCATTATTAer
    aer-RCGGCAGAGCCCGTCTATC
    env-FTCTCCTATGCCACCTTCTEnvZ
    env-RTCGGCGTCTTCACTCAAC
    omp-FTCAGGCTGAAGTTCTCACOmpR
    omp-RAATACAAGGTTCTGGTCG
    QseB-FGTCACGGGCGGTGAGGATQseB
    QseB-RTCAAGAGCGAGGAGTTTG
    QseC-FGAGATGAGCCACCACAGCQseC
    QseC-RCAACAACGTCACCAAGGA
    dsbA-FTTCCTTGCTGCCATGCTGDsbA
    dsbA-RGTTGGGCGCTACCGGTCT
    RpoE-FTTCGCCACCGCCATAGTARpoE
    RpoE-RCGCAGGAGGCATTCATCA
    ExbD1-FCTGCTTGTCTGGCTGGTTExbD1
    ExbD1-RTGGTGCTGCTCATCGTCT
    b561-FGAGCATCAGGGGGGAGAGB561
    b561-RATGGAGTTCAGGGACATC
    FimA FAAGTGGGGAAGAGATCGTGFimA
    FimA RATAAAGTCGGCGGAGGCAT
    PilA FGAATTGATGATCGTGGTCGPilA
    PilA RCGCTGTTGCTATGTTTGCC
    ycfS FGTCGATCCCTATTTGCCAAYcfS
    ycfS RCACCATCACCTCGTTTTTA
    HK-FCGCAGCAGAGCCATCCACAAHistidine
    HK-RAGTCCGCCGATCCACCACATkinases
    下载: 导出CSV

    表  3   斑马鱼腹腔注射累积死亡情况

    Table  3   The cumulative death of zebrafish injected A. hydrophila strains by intraperitoneal

    菌株
    Strain
    菌液浓度(cfu/尾)
    Concentration
    累积死亡数
    Cumulative death number
    累积死亡率
    Cumulative mortality rate (%)
    1234567
    Wild64501141515151515100
    3225012131313131386.67
    161316121212121280
    807077778853.33
    Δcpx66001131515151515100
    3300312131414141493.33
    165027111111111173.33
    825099999960.00
    下载: 导出CSV
  • [1]

    Thune R L, Stanley L A, Cooper R K. Pathogenesis of gram-negative bacterial infections in warm water fish [J]. Annual Reviews of Fish Diseases, 1993, 3: 145—185

    [2]

    Popoff M. Aeromonas. Krieg N R, editor. Bergy’s Manual of Systematic Bacteriology, vol. 1. Baltimore [M]. Williams &Wilkins, 1984, 545—548

    [3]

    Altwegg M, Geiss H K. Aeromonas as a human pathogen [J]. Critical Reviews in Microbiology, 1989, 16: 253—286

    [4]

    Austin B, Austin D A. Bacterial fish pathogens. Disease of Farmed and Wild Fish [M]. 5th ed Chichester: Springer Praxis, 2012, 119—146

    [5]

    Cipriano R C. Aeromonas hydrophila and Motile Aeromonad Septicemias of Fish [M]. Fish Disease Leaflet, 2001, 68

    [6]

    Conrad M. Cross-scale information processing in evolution, development and intelligence [J]. Biosystems, 1996, 38(2—3): 97—109

    [7]

    Raivio T L, Silhavy T J. Transduction of envelope stress in Escherichia coli by the Cpx two-component system [J]. Journal of Bacteriology, 1997, 179(24): 7724—7733

    [8] 张旭杰, 杨五名, 李彤彤, 等. 湖北地区暴发病池塘中嗜水气单胞菌的遗传多样性和毒力特征研究. 水生生物学报, 2013, 37(3): 458—466

    Zhang X J, Yang W M, Li T T, et al. The genetic diversity and virulence characteristics of Aeromonas hydrophila isolated from fishponds with disease outbreaks in Hubei province [J]. Acta Hydrobiologica Sinica, 2013, 37(3): 458—466

    [9]

    Ho S N, Hunt H D, Horton R M, et al. Site-directed mutagenesis by overlap extension using the polymerase chain-reaction [J]. Gene, 1989, 77(1): 51—59

    [10]

    Hu Y H, Liu C S, Hou J H, et al. Identification, characterization, and molecular application of a virulence-associated autotransporter from a pathogenic Pseudomonas fluorescens strain [J]. Applied and Environmental Microbiology, 2009, 75(13): 4333—4340

    [11]

    Kristin S, Emina C, Elke H, et al. Molecular and proteome analyses highlight the importance of the Cpx envelope stress system for acid stress and cell wall stability in Escherichia coli [J]. Microbiology Open, 2016, 5(4): 582—596

    [12] 李爱华. 我国鱼类病原菌耐药性、耐药质粒及几种药物抗菌作用的研究. 中国科学院水生生物研究所博士学位论文. 武汉. 1998

    Li A H. The study of the drug resistance, resistance plasmid of fish pathogenic bacteria, and the antibacterial action of several drug in China [D]. Ph D thesis, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. 1998

    [13]

    Acosta N, Pukatzki S, Raivio T L. The Vibrio cholerae Cpx envelope stress response senses and mediates adaptation to low iron [J]. Journal of Bacteriology, 2015, 197: 262—276

    [14]

    Raivio T L, Leblanc S K, Price N L, et al. The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity [J]. Journal of Bacteriology, 2013, 195: 2755—2767

    [15]

    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–ΔΔCt) method [J]. Methods, 2001, 25(4): 402—408

    [16]

    McEwen J, Silverman P. Chromosomal mutations of Escherichia coli that alter expression of conjugative plasmid functions [J]. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77: 513—517

    [17]

    Cosma C L, Danese P N, Carlson J H, et al. Mutational activation of the Cpx signal transduction pathway of Escherichia coli suppresses the toxicity conferred by certain envelope-associated stresses [J]. Molecular Microbiology, 1995, 18: 491—505

    [18]

    De W P, Lin E C. Cpx Two-Component Signal Transduction in Escherichia coli: Excessive CpxR-P levels underlie CpxA* phenotypes [J]. Journal of Bacteriology, 2000, 182(5): 1423—1426

    [19]

    De W P, Kwon O, Lin E C. The CpxRA signal transduction system of Escherichia coli: Growth-related autoactivation and control of unanticipated target operons [J]. Journal of Bacteriology, 1999, 181(21): 6772—6778

    [20]

    Gal-Mor O, Segal G. Identification of cpxR as a positive regulator of icm and dot virulence genes of Legionella pneumophila [J]. Journal of Bacteriology, 2003, 185(16): 4908—4919

    [21]

    Jubelin G, Vianney A, Beloin C, et al. Cpx R/Omp R interplay regulates curli gene expression in response to osmolarity in Escherichia coli [J]. Journal of Bacteriology, 2005, 187(6): 2038—2049

    [22]

    Gerken H, Misra R. MzrA-EnvZ interactions in the periplasm influence the EnvZ/OmpR two-component regulon [J]. Journal of Bacteriology, 2010, 192(23): 6271—6278

    [23]

    Blanvillain S, Meyer D, Boulanger A, et al. Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria [J]. PLoS One, 2007, 2: e224

    [24]

    Schauer K, Gouget B, Carrière M, et al. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery [J]. Molecular Microbiology, 2007, 63: 1054—1068

    [25]

    Humphreys S, Rowley G, Stevenson A, et al. Role of the two-component regulator Cpx AR in the virulence of Salmonella entetica serotype typhimurium [J]. Infection and Immunity, 2004, 72(8): 4654—4661

    [26]

    Debnath I, Norton J P, Barber A E, et al. The Cpx stress response system potentiates the fitness and virulence of uropathogenic Escherichia coli [J]. Infection and Immunity, 2013, 81(5): 1450—1459

图(11)  /  表(3)
计量
  • 文章访问数:  1836
  • HTML全文浏览量:  563
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-08
  • 修回日期:  2017-06-17
  • 网络出版日期:  2018-01-15
  • 发布日期:  2017-12-31

目录

    /

    返回文章
    返回