THRESHOLD OF THE JUVENILE ACIPENSER DABRYANUS DUMERIL
-
摘要: 试验采用室内噪声控制的方式模拟野外自然噪声环境, 以长江鲟(Acipenser dabryanus Dumeril)幼鱼为实验对象, 使用TDT听觉测试系统, 在100—500 Hz的刺激频率下, 通过听性脑干反应(Auditory Evoked Potential, AEP法)测定其听力阈值。结果显示, 长江鲟的最敏感频率为300 Hz, 声压为(133±0.5) dB, 听力曲线呈“V”型, 听觉阈值随着频率的不同而发生变化。总体看, 长江鲟听觉阈值较高, 听力较弱, 不能听到500 Hz以上的声音, 其中, 长江鲟的听觉阈值与湖鲟和匙吻鲟等鲟鱼类基本相似, 但比长江中常见的淡水鱼类的听觉阈值高、听频范围窄。研究结果将为长江鲟的野外放归和种群重建提供重要基础资料, 为评价涉渔工程建设运行对长江鱼类的影响提供基础数据支撑。Abstract: As an important “golden waterway” in China, the Yangtze River has suffered more and more destruction by human activities, such as ship transportation, channel improvement, bridge construction, hydraulic operations, dock loading and unloading, all of those caused noise pollution and influenced the fish lived in the river, even caused fish death. Acipenser dabryanus Dumeril as an important fish in the Yangtze River, its necessary to evaluate how the noise effects it. Based on this, in order to simulate the natural noise environment in the wild, the indoor noise control was used to this experiment, a stimulation frequency of 100—500 Hz was set, the Auditory Evoked Potential was used to test the threshold of juvenile Yangtze sturgeon (Acipenser dabryanus Dumeril). The results showed that the most sensitive frequency of the Acipenser dabryanus Dumeril is 300 Hz, the sound pressure is (133±0.5) dB, the hearing curve of Acipenser dabryanus Dumeril is a “V”-shaped. Different from other fishes, the Acipenser dabryanus Dumeril has a higher hearing threshold, but it cannot hear frequency above 500 Hz. Compared with the Acipenser fulvescens and Aspiolucius merzbacheri, the hearing thresholds between the three are similar. When compared with the common freshwater fish in the Yangtze River, the results showed that Acipenser dabryanus Dumeril has a higher threshold and narrower range of hearing frequency. Results of the experiment will provide important basic data for the protection and population reconstruction of the Acipenser dabryanus Dumeril, which also can provide basic data support for evaluating the impact of the fish-related projects of the fish lived in the Yangtze River.
-
在水产养殖中, 越冬(尤其是北方地区)是一个特殊的阶段, 鱼类遭受多种越冬应激影响, 例如食物匮乏、水温低和光照[1]。鱼类的免疫反应随着季节变化而变化, 冬季鱼类的免疫功能受到抑制, 同时造成较高的氧化应激反应, 进而导致鱼类高死亡率[2]。鱼类动员机体储备的能量物质, 以度过食物短缺时期, 例如在越冬期间[3]。这种动员不仅仅包括肝胰脏, 还包括肌肉和脂肪组织中的脂质分解; 以肌肉中蛋白质为主要能量来源; 或者将肝糖原或肌糖原分解成葡萄糖作为能量底物[4]。根据本实验室的前期的研究结果, 越冬期间, 脂质动员是作为鱼类应对越冬胁迫的最重要能量供应方式之一, 自始至终从越冬开始到越冬结束维持鱼体能量之稳态[5]。有研究表明, 鱼类在长期营养匮乏胁迫下, 动员能量抵御不利应激的同时, 诱导机体产生了活性氧自由基(ROS), 长期累积造成氧化应激[6, 7]。过多的ROS会破坏机体抗氧化系统的平衡以及稳定, 造成细胞的损伤、细胞核的凋亡以及脂肪酸过氧化[8, 9]。尤其在越冬期间作为主要供能物质的脂肪酸, 其供能作用受到巨大威胁以及挑战。最直接结果就是降低供能水平, 造成机体抗氧化力以及免疫力的进一步降低, 故而提高了死亡率[10]。越冬期间造成了氧化应激的过度产生, 提高了鱼体死亡, 因此探索并解决越冬胁迫对鱼体抗氧化力乃至免疫力之间的相互作用关系具有重要的意义。
草鱼(Ctenopharyngodon idellus)作为我国主要经济淡水鱼之一, 其产量居2019年中国养殖鱼类产量的榜首, 达553.3×107 kg [11]。由于草鱼生长迅速, 繁育技术较为成熟, 价格亲民, 营养丰富, 因此深受养殖者以及消费者的欢迎[12]。但是在越冬胁迫下面临着鱼体内ROS的过量生成, 诱导了氧化应激胁迫。而过度的氧化应激可能导致机体免疫力下降, 诱发疾病甚至死亡率的提高, 不利于草鱼水产养殖业的健康发展。为了建立有效的策略, 并指导管理决策以改善该草鱼的越冬存活率, 因而需要更好地了解越冬驱动的高度氧化应激的相互作用。因此, 本研究以草鱼为研究对象, 探索越冬条件下氧化应激对草鱼免疫和抗氧化能力的影响, 以及与机体脂肪酸组成变化之间的相互联系, 为缓解草鱼越冬期间产生过度的氧化应激的反应以及降低鱼体死亡率提供相关的理论依据。
1. 材料与方法
1.1 实验材料
实验用鱼均取自西北农林科技大学安康水产试验示范站室外培育池塘, 选择同一批次养成商品规格的草鱼, 挑选大小整齐以及健壮的个体作为实验对象, 实验鱼体重(1053.33±16.11) g。同时在室外培育水泥池中驯化两周后开始实验, 驯化期间每日正常投喂商品饲料(粗蛋白28%, 粗脂肪6%)。
1.2 实验条件和方法
实验在室外培育水泥池中进行(4 m×4 m×1 m), 选取8个实验池, 中间用隔网隔开, 上面架设遮阳网, 水深控制0.50 m左右, 水容量8 m3左右。经过2周投饲驯化后, 停食1天进行分组; 随机分为7组, 每组3个重复, 每个重复15尾鱼。当水温自然下降到草鱼停止摄食(水温: 15℃)时, 实验开始; 当水温自然升高到草鱼开始重新觅食(水温: 15℃)时实验结束, 此过程即为越冬期。实验共计7 组, 分别为饥饿0周(Week 0)、1周(Week 1)、2周(Week 2)、4周(Week 4)、8周(Week 8)、12周(Week 12)和16周(Week 16)。实验用水为曝气后井水, 流水环境, 每2周清污一次。每日定时监测水温、水质, 同时观察实验鱼鱼体的健康状况以及死亡状况。实验用水条件: pH 7.8—8.2, 溶解氧5—6 mg/L, 氨氮<0.1 mg/L, 亚硝酸盐<0.01 mg/L, 硫化物<0.05 mg/L。
1.3 样品采集
采样程序经过西北农林科技大学动物保护与利用委员会批准, 同时按照动物福利与道德规范进行执行。在各实验组饥饿处理结束后, 所有鱼均用50 mg/L MS222麻醉后, 再对其进行取样。每组实验鱼, 逐一测量体质量、体长和全长等指标, 计算肥满度。每个平行随机抽取2尾鱼进行尾静脉采血, 4℃冰箱静置2h后, 4℃离心(3000 r/min, 15min), 上层澄清透明淡黄色的血清速冻于液氮中, 而后转入–80℃冰箱保存, 用作血清抗氧化酶活性指标测定; 每个平行随机抽取2尾鱼在冰盘上进行解剖, 取其内脏团, 分离肝胰脏、肾、脾及腹腔脂肪等组织, 称重, 同时量取肠道长度, 计算脏体比、肝体比、肾指数、脾指数、腹腔脂肪指数及肠体比等指标。随后在上述分离组织中, 取部分肝胰脏、肌肉、前肠和腹腔脂肪组织速冻于液氮中, 随后转–80℃冰箱保存, 用作酶活性测量及脂肪酸的测定。
1.4 测定指标和方法
根据以下公式, 计算肥满度、肝体比、脏体比、肠体比、肾指数、脾指数和腹腔脂肪指数:
肥满度(Condition factor, CF, g/cm3)=鱼体重×100/体长3;
肝体比(Hepatosomatic index, HSI)=肝胰脏重×100/鱼体重;
脏体比(Viscerosomatic index, VSI)=内脏重×100/鱼体重;
肠体比(Relative intestine length, RIL)=肠长×100/体长;
肾指数(Kidney index, KI)= 肾脏重×100/鱼体重;
脾指数(Spleen index, SI)= 脾脏重×100/鱼体重;
腹腔脂肪指数(Intraperitoneal fat body index, IPFI)=腹腔脂肪重×100/鱼体重;
成活率(Survival rate, SR, %)=最终鱼数×100/初始鱼数。
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
脂肪酸测定分析过程中, 脂肪提取参照Tian等[13]的方法。取组织样品大约5 g, 放置于10 mL离心管; 加入氯仿−甲醇混合液(体积比2﹕1)溶液5 mL, 高速匀浆后, 摇床震荡2h使之充分混匀, 随后再用定量滤纸过滤。加入4 mL 去离子水, 震荡混匀后在离心机上进行3000 r/min离心5min, 弃上清液及中间组织蛋白层, 下层40℃水浴蒸干。蒸干后加入1 mL正己烷(色谱纯)溶解提取出的油脂。油脂的皂化及甲酯化参照Tian等[13]的方法, 加入1 mL 氢氧化钾/甲醇溶液(0.4 mol/L), 再进行30min的甲酯化。最终加入2 mL去离子水, 震荡混匀后在离心机上进行3000 r/min离心5min, 取上层溶液–20℃保存。样品首先皂化以及甲酯化后, 使用气相色谱仪(Agilent7820a, Agilent Technologies, Santa Clara, CA, USA)进行测定。脂肪酸甲酯样品, 通过与脂肪酸甲酯混合标准品(47015-U, Sigma-Aldrich, USA)进行比较鉴定。取1 μL混合物进行上机检测。脂肪酸组成的相对值分析按面积归一化法计算, 以总脂肪酸的百分比形式呈现[14]。
1.5 数据处理
所有数据均采用SPSS统计软件(19.0版, Chicago, IL, USA)的单因素方差分析和Duncan’s多重比较检验进行分析。使用Origin Pro 2017C(Northampton, MA, USA)软件, 采用协方差矩阵法(Covariance matrix)对不同组织抗氧化酶活性数据进行主成分分析(Principal component analysis, PCA)分析, 解释不同越冬时间对不同组织抗氧化能力的相对影响和差异; 同时采用协方差矩阵法(Covariance matrix)对肝胰脏、肌肉和脂肪组织脂肪酸数据进行主成分分析分析[15], 解释不同越冬时间对上述组织脂肪酸组成的相对差异。采用相关矩阵法(Correlation matrix)对肝胰脏、肌肉和脂肪组织脂肪酸与酶活性数据进行主成分分析分析[16], 解释不同越冬时间处理对肝胰脏、肌肉和脂肪组织中的抗氧化能力与脂肪酸组成的相对差异。其中, 各组织脂肪酸数据首先进行正(余)弦或对数转换, 使之方差齐性, 以适应PCA分析对线性关系的要求[17], 再进行单因素方差分析(One-way ANOVA)和Duncan’s多重比较检验; 主成分分析中的因子提取使用, 按特征值大于0.5的标准确定, 为了使因子易于解释和命名, 采用方差最大正交旋转法对其进行旋转处理。所有数据用平均值±标准差(mean±SD)的方式表示。P<0.05为差异显著。柱状图采用Prism 7 软件(Graph Pad Software Inc., San Diego, USA)进行绘制。
2. 结果
2.1 不同越冬时间对草鱼生物学性状的影响
随着越冬时间延长, 越冬草鱼体重、肝胰脏重量、肥满度、肝体比、脏体比、肠体比和腹腔脂肪指数等指标均呈现显著下降的趋势(P<0.05); 而肾指数和脾指数呈现显著上升的趋势(P>0.05; 表 1)。
表 1 不同越冬时间处理对草鱼生物学性状的影响Table 1. Effects of different overwintering time treatment on biometric parameters in grass carp (n=3)组别 Group 组别 Group 第0周
Week 0第1周
Week 1第2周
Week 2第4周
Week 4第8周
Week 8第12周
Week 12第16周
Week 16体重 Body weight (g) 1051.67±20.82e 981.67±20.45de 931.67±24.66d 896.67±25.66c 861.67±22.52bc 848.33±10.72b 816.67±19.83a 肝胰脏重 Hepatopancreas
weight (g)32.8±2.98c 19.47±2.17b 16.83±1.25b 18.2±1.67b 16.43±1.12ab 14.69±0.94a 13.34±0.88a 肥满度 Condition
factor (g/cm3)2.06±0.09c 1.94±0.03bc 1.92±0.07bc 1.91±0.14bc 1.88±0.03bc 1.85±0.14ab 1.71±0.08a 肝体比 Hepatosomatic
index3.11±0.63b 2.94±0.37b 2.86±0.01ab 2.77±0.26ab 2.67±0.12ab 2.39±0.55ab 2.13±0.43a 脏体比 Viscerosomatic
index13.62±0.27d 13.44±0.46cd 12.76±0.71c 12.84±0.60c 11.98±0.19bc 11.89±0.97b 9.93±0.77a 肠体比 Relative intestine
length2.06±0.18d 1.96±0.09cd 1.95±0.10cd 1.81±0.15bcd 1.70±0.29ab 1.58±0.18a 1.54±0.14a 肾指数 Kidney index 0.26±0.05a 0.30±0.05ab 0.32±0.03abc 0.39±0.04bc 0.40±0.09bc 0.40±0.05bc 0.43±0.08c 脾指数 Spleen index 0.10±0.03a 0.11±0.01ab 0.10±0.01a 0.12±0.02ab 0.12±0.01ab 0.12±0.02ab 0.14±0.02b 腹腔脂肪指数
Intraperitoneal
fat body index2.63±0.54d 2.37±0.20cd 2.16±0.19c 2.09±0.33c 1.83±0.18b 1.66±0.24b 1.27±0.06a 成活率 Survival rate (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 注: 不同的字母表示不同处理之间的差异, 显著性P<0.05; 下同Notes: Different letters indicate differences between treatments at a significance of P<0.05. The same applies below 2.2 不同越冬时间对草鱼组织抗氧化指标的影响
如图 1所示, 随着越冬时间延长, 肝胰脏、肌肉、前肠、脂肪组织和血清中抗氧化能力相关指标均发生了显著变化(图 1A—E; P<0.05), 故而采用主成分分析法降低原有多个组织中抗氧化能力相关指标变量的维度, 用较少的独立公因子反映原有变量的绝大部分信息。图 2显示了经PCA处理后形成的评分图和载荷图。载荷特征值如表 2所示, 只有特征值大于1.0才被视为数据差异的重要主成分(根据Kaiser规则)。前3个公因子的特征值均大于1.0, 表明这3个公因子对PCA解释的累计方差有着重要贡献。PC1和PC2一起解释了98.96%的累计方差贡献率(方差贡献率分别为84.79%和14.17%), PC3只解释0.96%方差贡献率。因此, 3个公因子足以解释不同越冬处理下, 不同组织中不同抗氧化能力相关指标的变化。在评分图中, 不同颜色椭圆面积大小表示不同组织中抗氧化能力相关指标在不同越冬时间处理下的变化趋势, 面积越大, 表示抗氧化能力相关指标在越冬时间处理下变化程度越大, 那么该组织在越冬时间内其抗氧化能力指标体系变化越剧烈。椭圆面积由大到小依次是: 脂肪组织>肝胰脏>肌肉>前肠>血清。显示脂肪组织在越冬时间内其抗氧化能力指标体系变化程度最剧烈, 间接体现脂肪组织在越冬期间所有氧化应激程度最大; 其次是肝胰脏和肌肉, 变化最小的是前肠和血清。而载荷图显示, SOD和CAT对总体抗氧化能力的贡献中起主要影响(主成分载荷特征值绝对值大于0.5)。
图 2 通过分析不同越冬时间处理下草鱼各组织中抗氧化能力, 根据选定的抗氧化酶活性含量变量(图 1)生成PCA评分图和载荷图A. 评分图解释了变量之间的相关性及基于分析所得得分的样本之间的聚类, 椭圆对应于95%的置信区间, 分别对应不同组织; B. 向量表示导致方差的变量, 箭头指示抗氧化酶活性变量如何促进PC1和PC2的形成; 下同Figure 2. PCA score plot and loading plot are generated based on selected antioxidant capacity variables (Fig. 1) obtained by analyzing the fatty acid composition in tissue and serum of grass carp under different overwintering time treatmentsA. The score plot explains the correlation between variables and the clustering between samples based on the scores obtained from the analysis. The ellipse corresponds to the 95% confidence interval and corresponds to different organizations respectively; B. The vector represents the variable leading to the variance, and the arrow indicates how the antioxidant enzyme activity variable promotes the formation of PC1 and PC2; The same applies below表 2 协方差矩阵法下的显著主成分载荷特征值分析Table 2. Eigen analysis of the covariance matrix loadings for significant principal components变量 Variables PC1 PC2 PC3 丙二醛MDA 0.01 0.10 0.09 过氧化氢酶CAT 0.22 –0.95 –0.19 超氧阴离子 ${\rm{O}}_2\cdot^{-}$ 0.00 0.02 0.01 超氧化物歧化酶SOD 0.94 0.26 –0.23 谷胱甘肽巯基转移酶GST 0.27 –0.14 0.95 特征值 Eigen value 96616.52 16143.72 1096.24 贡献率 Contribution rate (%) 84.79 14.17 0.96 累计贡献率 Cumulative
contribution rate (%)84.79 98.96 99.93 注: 共选择5个抗氧化酶活性变量进行分析, PC1、PC2和PC3分别指主成分1、2和3, 表中的值表示负荷(指示主成分中变量关系的程度和方向), 有效载荷值(>0.5)用粗体数字表示, (+和–)符号分别表示正相关和负相关Note: A total of 5 antioxidant enzymes activity variables are selected for the analyses. PC1, PC2 and PC3 refer to principal components 1, 2 and 3, respectively. The values in the table represent loadings (indicating degree and direction of the relationship of the variables within a principal component). Significant loading values (>0.5) are indicated in bold numbers. (+ and –) signs indicate positive and negative correlations, respectively 2.3 不同越冬时间对草鱼肝胰脏、肌肉和脂肪组织脂肪酸组成的影响
根据上述结果, 不同越冬时间内肝胰脏、肌肉和脂肪组织中抗氧化体系变化最剧烈, 故而选定这3种组织进行脂肪酸比例测定。随着越冬时间的增长, 肝胰脏、肌肉和脂肪组织中各类脂肪酸组成比例均产生了显著差异(P<0.05; 表 3—5)。通过主成分分析, 图 3中评分图表示不同越冬时间处理下草鱼肝胰脏、肌肉和脂肪组织中脂肪酸比例的变化趋势, 各组织在不同越冬时间处理下, 均表现出了较大的差异性; 在肝胰脏中, 越冬第0、第1和第4周处理组在评分图第一四象限, 越冬第2和第12周处理组在第二象限, 越冬第8和16周处理组在第三象限; 在肌肉中, 越冬第0、第1、第4和第8周处理组在评分图第三四象限, 越冬第2周处理组在第一象限, 越冬第12和第16周处理组在第二象限; 脂肪组织中, 越冬第2周处理组在第一象限, 越冬第0、第8、第12和第16周处理组在评分图第二三象限, 越冬第1和第4周处理组在评分图第四象限。表 6中, 主成分分析后, 对肝胰脏、肌肉和脂肪组织分析得出: 前3个公因子累计贡献率均超过95%, 表明可以使用上述3个主因子(PC1、PC2和PC3)较好地代表18项脂肪酸变量指标。结合图 3, 对肝胰脏、肌肉和脂肪组织载荷图进行分析可得: 肝胰脏PUFA比例变化对总体脂肪酸比例变化产生主要影响(主成分载荷特征值大于0.5), 在越冬期间, PUFA比例变化呈现显著上升(P<0.05); 肌肉C18:2n-6和C16:0比例变化对总体脂肪酸组成产生了主要影响, C18:2n-6比例变化在越冬期间呈现先显著下降而后显著上升, C16:0比例变化显著下降(P<0.05); 腹腔脂肪PUFA、n-6PUFA、SFA和MUFA比例变化对总体脂肪酸比例产生了主要影响, 越冬胁迫期间, PUFA、n-6PUFA和MUFA比例变化呈现显著下降后上升保持稳定, SFA比例变化呈现显著上升后下降保持稳定(P<0.05)。
表 3 不同越冬时间处理对草鱼肝胰脏组织脂肪酸组成的影响Table 3. Fatty acid composition of hepatopancreas in grass carp under different overwintering time treatments (% total fatty acid; mean±SD; n=3)脂肪酸
Fatty acid组别 Group 第0周
Week 0第1周
Week 1第2周
Week 2第4周
Week 4第8周
Week 8第12周
Week 12第16周
Week 16C14:0 2.25±0.11b 2.09±0.07ab 1.87±0.05a 3.04±0.06c 2.86±0.35c 1.87±0.12b 2.91±0.16c C16:0 22.24±0.43bc 22.26±0.69bc 19.57±0.68a 19.95±0.79a 22.17±0.12b 20.50±0.27a 23.20±0.52c C18:0 9.50±0.38d 7.77±0.19c 6.17±0.21ab 5.62±0.46a 7.41±0.61c 6.48±0.21b 9.21±0.13d ∑SFA 33.99±0.56c 32.12±0.81b 27.61±0.79a 28.61±1.14a 32.44±0.79b 28.85±0.48a 35.32±0.53d C16:1n-7 5.87±0.09c 6.66±0.12d 4.69±0.17a 9.86±0.53f 7.69±0.26e 5.34±0.20b 5.92±0.23c C18:1n-9 45.25±0.24e 44.24±0.37e 42.87±1.32d 45.30±0.72e 38.02±0.83c 36.40±0.64b 33.81±0.80a ∑MUFA 51.12±0.31e 50.91±0.26e 47.56±1.46d 55.16±1.25f 45.70±0.88c 41.74±0.82b 39.72±0.57a C18:2n-6 9.36±0.51a 12.22±0.95b 20.48±0.92d 10.34±0.24a 12.65±0.18b 21.08±1.01d 15.00±0.35c C18:3n-6 0.34±0.05a 0.40±0.03a 0.59±0.04b 0.35±0.04a 0.55±0.16b 0.66±0.03b 0.69±0.12b C20:3n-6 0.68±0.19b 0.64±0.03b 0.82±0.06c 0.33±0.09a 0.30±0.07a 0.22±0.02a 0.32±0.03a C22:4n-6 0.16±0.03a 0.15±0.01a 0.20±0.05a 0.33±0.05a 0.64±0.40b 0.34±0.03a 1.15±0.03c ∑n-6PUFA 10.54±0.35a 13.42±0.96b 22.09±0.99d 11.36±0.26a 14.14±0.19b 22.30±0.98d 17.16±0.26c C18:3n-3 2.57±0.11c 2.11±0.10b 1.60±0.12a 2.64±0.25c 2.39±0.14c 1.47±0.03a 1.36±0.18a C20:5n-3 EPA 1.06±0.04b 0.75±0.18a 0.52±0.07a 1.23±0.12b 3.68±0.23e 3.40±0.26d 3.08±0.08c C22:6n-3 DHA 0.70±0.10ab 0.70±0.15ab 0.61±0.06a 1.00±0.19b 1.65±0.10c 2.26±0.30d 3.35±0.32e ∑n-3PUFA 4.34±0.08c 3.55±0.37b 2.73±0.16a 4.87±0.15d 7.72±0.27f 7.11±0.07e 7.80±0.36f ∑PUFA 14.89±0.27a 16.97±0.59b 24.83±0.86d 16.22±0.19b 21.85±0.15c 29.41±0.97e 24.96±0.31d n-3/n-6∑PUFA 0.41±0.02d 0.27±0.05b 0.12±0.02a 0.43±0.02d 0.55±0.02e 0.32±0.02c 0.45±0.02d 合计 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 表 4 不同越冬时间处理对草鱼肌肉组织脂肪酸组成的影响Table 4. Fatty acid composition of muscle in grass carp under different overwintering time treatments (% total fatty acid; mean±SD; n=3)脂肪酸
Fatty acid组别 Group 第0周
Week 0第1周
Week 1第2周
Week 2第4周
Week 4第8周
Week 8第12周
Week 12第16周
Week 16C14:0 2.33±0.15b 3.25±0.11d 3.57±0.08e 3.68±0.26e 3.63±0.13e 2.85±0.07c 1.63±0.09a C16:0 21.67±0.25b 20.74±0.73ab 21.08±0.34b 22.71±0.99c 23.91±0.27d 21.52±0.14b 19.86±0.82a C18:0 6.14±0.36a 9.20±0.94d 11.18±0.57e 10.60±0.22e 8.19±0.19c 7.24±0.35b 5.54±0.38a ∑SFA 30.15±0.39b 33.20±0.42d 35.84±0.87ef 36.99±1.23f 35.73±0.31e 31.61±0.55c 27.03±0.51a C16:1n-7 5.77±0.27b 6.50±0.14c 4.71±0.28a 5.95±0.52bc 5.93±0.29bc 4.98±0.13a 5.13±0.36a C18:1n-9 39.98±0.41d 35.99±0.72c 30.56±0.32a 30.67±1.27a 33.34±0.69b 36.27±0.32c 40.25±0.20d ∑MUFA 45.75±0.58d 42.49±0.72c 35.27±0.05a 36.63±1.52a 39.27±0.96b 41.24±0.34c 45.38±0.55d C18:2n-6 18.16±0.14b 14.27±0.99a 17.96±0.36b 13.16±0.96a 13.46±0.50a 20.19±0.78c 20.94±0.30c C18:3n-6 0.84±0.04c 0.66±0.04bc 0.64±0.19bc 0.34±0.11a 0.48±0.07ab 0.53±0.02ab 0.70±0.24bc C20:3n-6 0.55±0.06a 1.22±0.27b 0.81±0.05a 1.30±0.25b 0.63±0.22a 0.74±0.06a 0.71±0.06a C22:4n-6 0.56±0.08a 0.55±0.14a 0.83±0.05b 1.41±0.22c 1.23±0.15c 0.54±0.11a 0.61±0.08a ∑n-6PUFA 20.10±0.03b 16.71±0.76a 20.25±0.55b 16.21±0.59a 15.81±0.66a 22.00±0.63c 22.96±0.19d C18:3n-3 1.37±0.05 1.55±0.12 1.60±0.08 1.12±0.63 1.16±0.10 1.25±0.06 1.30±0.12 C20:5n-3 EPA 1.36±0.17a 2.87±0.20c 3.67±0.08d 3.59±0.16d 3.62±0.29d 1.88±0.13b 1.83±0.33b C22:6n-3 DHA 1.27±0.10a 3.19±0.74c 3.37±0.23c 5.46±0.15d 4.42±0.42e 2.02±0.37b 1.50±0.15ab ∑n-3PUFA 4.00±0.24a 7.61±1.06c 8.64±0.38d 10.17±0.62e 9.19±0.07d 5.15±0.44b 4.63±0.47ab ∑PUFA 24.10±0.21a 24.32±1.03a 28.89±0.89d 26.38±0.31b 25.00±0.73a 27.14±0.21bc 27.59±0.29c n-3/n-6∑PUFA 0.20±0.01a 0.46±0.07b 0.43±0.01b 0.63±0.06c 0.58±0.02c 0.23±0.03a 0.20±0.02a 合计 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 表 5 不同越冬时间处理对草鱼腹腔脂肪组织脂肪酸组成的影响Table 5. Fatty acid composition of adipose tissue in grass carp under different overwintering time treatments (% total fatty acid; mean±SD; n=3)脂肪酸
Fatty acid组别 Group 第0周
Week 0第1周
Week 1第2周
Week 2第4周
Week 4第8周
Week 8第12周
Week 12第16周
Week 16C14:0 2.15±0.02b 2.08±0.25b 1.98±0.06b 2.11±0.03b 1.64±0.02a 1.69±0.03a 1.76±0.04a C16:0 20.00±0.42c 19.65±0.22c 22.05±0.08e 21.36±0.29d 21.04±0.36d 18.37±0.04a 18.97±0.31b C18:0 4.54±0.28a 4.95±0.09b 5.50±0.14c 5.83±0.35c 5.11±0.13b 4.77±0.15ab 4.51±0.03a ∑SFA 26.69±0.18b 26.68±0.38b 29.53±0.19d 29.30±0.52d 27.79±0.38c 24.83±0.15a 25.24±0.28a C16:1n-7 6.48±0.14b 7.14±0.09c 5.35±0.09a 6.40±0.38b 5.65±0.16a 5.51±0.07a 7.04±0.15c C18:1n-9 43.62±0.22a 44.51±0.69b 43.62±0.28a 46.54±0.34c 43.59±0.59a 43.65±0.06a 44.58±0.22b ∑MUFA 50.10±0.35b 51.65±0.61c 48.97±0.35a 52.94±0.07d 49.24±0.43a 49.16±0.13a 51.62±0.29c C18:2n-6 19.97±0.14d 18.54±0.12b 18.28±0.18b 14.79±0.62a 19.79±0.25cd 22.54±0.11e 19.41±0.14c C18:3n-6 0.43±0.12a 0.53±0.06abc 0.56±0.03bc 0.45±0.06ab 0.52±0.01abc 0.71±0.04d 0.57±0.03c C20:3n-6 0.19±0.05a 0.60±0.06b 0.56±0.15b 0.47±0.06b 0.54±0.11b 0.56±0.04b 0.59±0.05b C22:4n-6 0.21±0.08ab 0.15±0.06ab 0.13±0.10a 0.16±0.03ab 0.20±0.03ab 0.26±0.04b 0.22±0.01ab ∑n-6PUFA 20.80±0.22c 19.81±0.23b 19.54±0.14b 15.87±0.63a 21.04±0.27c 24.08±0.04d 20.79±0.19c C18:3n-3 1.66±0.21b 1.49±0.15ab 1.42±0.04a 1.47±0.04ab 1.38±0.14a 1.38±0.08a 1.65±0.05b C20:5n-3 EPA 0.20±0.06a 0.20±0.09a 0.39±0.21b 0.27±0.02ab 0.38±0.04ab 0.19±0.04a 0.40±0.06b C22:6n-3 DHA 0.58±0.07c 0.16±0.05a 0.15±0.03a 0.15±0.03a 0.18±0.04a 0.35±0.03b 0.30±0.03b ∑n-3PUFA 2.44±0.31b 1.85±0.26a 1.96±0.14a 1.88±0.05a 1.94±0.17a 1.92±0.06a 2.35±0.08b ∑PUFA 23.24±0.18c 21.67±0.47b 21.5±0.20b 17.76±0.59a 22.97±0.28c 26.00±0.02d 23.14±0.11c n-3/n-6∑PUFA 0.12±0.02c 0.09±0.01ab 0.10±0.01bc 0.12±0.01d 0.09±0.01ab 0.08±0.01a 0.11±0.01c 合计 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 表 6 协方差矩阵法下的显著主成分载荷特征值分析Table 6. Eigen analysis of the covariance matrix loadings for significant principal components脂肪酸 Fatty acid 肝胰脏 Hepatopancreas 肌肉 Muscle 脂肪组织 Adipose tissue Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 C14:0 0.01 –0.05 0.11 0.09 –0.01 0.08 0.03 –0.01 –0.14 C16:0 0.01 –0.23 –0.18 0.10 –0.12 0.64 0.20 0.45 –0.15 C18:0 0.01 –0.20 –0.34 0.24 0.10 –0.33 0.08 0.09 0.32 ∑SFA 0.03 –0.48 –0.41 0.43 –0.03 0.39 0.31 0.54 0.04 C16:1n-7 0.10 –0.04 0.49 0.01 –0.15 –0.08 0.04 –0.28 –0.60 C18:1n-9 0.38 0.41 –0.28 –0.47 –0.26 –0.04 0.18 –0.29 0.60 ∑MUFA 0.48 0.37 0.21 –0.46 –0.41 –0.12 0.22 –0.57 0.00 C18:2n-6 –0.39 0.38 –0.15 –0.31 0.52 0.21 –0.49 0.07 0.06 C18:3n-6 –0.01 0.00 0.00 –0.01 0.00 0.01 –0.01 0.00 0.05 C20:3n-6 0.01 0.02 –0.07 0.02 –0.01 –0.14 0.00 –0.01 0.07 C22:4n-6 –0.02 –0.04 0.03 0.04 –0.01 0.00 –0.01 0.00 0.00 ∑n-6PUFA –0.41 0.35 –0.18 –0.27 0.49 0.07 –0.51 0.06 0.18 C18:3n-3 0.05 –0.01 0.06 0.00 0.01 –0.08 0.00 –0.03 –0.13 C20:5n-3 EPA –0.08 –0.13 0.24 0.11 0.01 –0.11 0.00 0.02 –0.03 C22:6n-3 DHA –0.07 –0.11 0.09 0.18 –0.06 –0.15 –0.02 –0.01 –0.07 ∑n-3PUFA –0.10 –0.25 0.38 0.29 –0.05 –0.34 –0.01 –0.03 –0.23 PUFA –0.51 0.11 0.20 0.03 0.45 –0.27 –0.53 0.03 –0.05 n-3/n-6∑PUFA 0.00 –0.02 0.03 0.02 –0.01 –0.02 0.00 0.00 –0.01 特征值 Eigen value 99.62 31.06 6.56 60.67 14.33 2.08 20.57 3.94 0.42 贡献率 Contribution rate (%) 71.99 22.45 4.74 77.02 18.19 2.64 81.58 15.65 1.67 累计贡献率 Cumulative contribution rate (%) 71.99 94.44 99.18 77.02 95.21 97.85 81.58 97.23 98.90 注: 共选择18个脂肪酸变量进行分析; SFA. 饱和脂肪酸, MUFA. 单不饱和脂肪酸, HUFA. 高不饱和脂肪酸, PUFA. 多不饱和脂肪酸Note: A total of 18 fatty acid variables are selected for the analyses. SFA. Saturated fatty acid, MUFA. Monounsaturated fatty acid, HUFA. Highly-unsaturated fatty acid, PUFA. Poly-unsaturated fatty acid 2.4 不同越冬时间对草鱼肝胰脏、肌肉和脂肪组织脂肪酸组成和抗氧化能力相关指标关联性的影响
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
表 7 相关矩阵法下的显著主成分载荷特征值分析Table 7. Eigen analysis of the correlation matrix loadings for significant principal components变量 Variables 肝胰脏 Hepatopancreas 肌肉 Muscle 脂肪组织 Adipose tissues Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 C14:0 0.03 –0.26 –0.26 –0.25 –0.01 –0.04 0.14 0.23 0.15 C16:0 –0.06 –0.26 0.33 –0.17 0.30 –0.20 0.27 0.00 0.28 C18:0 –0.02 –0.22 0.46 –0.23 –0.21 0.00 0.30 –0.06 0.01 ∑SFA –0.04 –0.28 0.34 –0.26 –0.01 –0.09 0.30 0.01 0.23 C16:1n-7 0.16 –0.17 –0.40 –0.09 0.39 0.32 –0.04 0.29 –0.30 C18:1n-9 0.32 0.12 0.01 0.25 0.17 0.14 0.20 0.16 –0.35 ∑MUFA 0.32 0.05 –0.11 0.28 0.23 0.19 0.13 0.25 –0.39 C18:2n-6 –0.24 0.24 –0.03 0.24 –0.22 –0.17 –0.29 –0.19 0.10 C18:3n-6 –0.29 0.05 –0.03 0.19 –0.04 0.18 –0.14 –0.28 –0.20 C20:3n-6 0.16 0.20 0.35 –0.15 –0.09 0.20 0.03 –0.18 –0.39 C22:4n-6 –0.21 –0.20 –0.05 –0.24 0.08 –0.16 –0.20 –0.03 0.02 ∑n-6PUFA –0.25 0.23 –0.02 0.24 –0.25 –0.17 –0.29 –0.21 0.06 C18:3n-3 0.29 –0.14 –0.12 0.03 –0.26 0.24 –0.11 0.32 0.02 C20:5n-3 EPA –0.24 –0.21 –0.15 –0.27 –0.13 0.01 0.01 0.03 0.03 C22:6n-3 DHA –0.28 –0.17 –0.04 –0.28 0.02 –0.03 –0.23 0.15 0.26 ∑n-3PUFA –0.22 –0.26 –0.15 –0.28 –0.07 0.01 –0.19 0.28 0.17 ∑PUFA –0.31 0.11 –0.07 0.00 –0.29 –0.25 –0.30 –0.17 0.08 n-3/n-6∑PUFA –0.01 –0.36 –0.14 –0.28 0.05 0.06 0.06 0.36 0.08 MDA 0.08 0.26 0.03 0.21 0.10 0.08 0.16 0.08 0.40 CAT –0.13 0.21 –0.27 –0.14 0.29 –0.33 0.16 –0.31 0.01 ${\rm{O}}_2\cdot^{-}$ –0.03 0.24 –0.12 0.12 0.02 –0.42 0.23 –0.24 0.11 SOD –0.24 0.10 0.16 0.19 0.13 –0.26 0.28 –0.14 –0.01 GST –0.23 0.16 0.05 0.10 0.27 –0.40 0.27 –0.18 0.01 特征值 Eigen value 8.87 7.09 2.97 12.42 3.18 2.94 8.87 5.99 2.66 贡献率 Contribution rate (%) 38.54 30.83 12.91 54.01 13.80 12.78 38.58 26.03 11.58 累计贡献率 Cumulative contribution rate (%) 38.54 69.37 82.28 54.01 67.82 80.59 38.58 64.61 76.19 注: 共选择24个变量进行分析Note: A total of 24 variables are selected for the analyses 3. 讨论
3.1 不同越冬时间对草鱼生物学性状的影响
鱼类在自然界生长过程中, 经常面临饥饿这一种自然生理胁迫。在饥饿胁迫影响下, 鱼体往往只能依靠自身的营养物质的消耗来维持机体能量的代谢平衡[18]。生物学性状是反映不同状态下鱼体营养储备消耗情况最直接量化指标[19]。本研究结果表明, 在越冬胁迫下, 草鱼的生物学性状参数中, 体重、肝胰脏重量、肥满度、肝体比、脏体比、肠体比和腹腔脂肪指数均呈现显著下降的趋势, 但是肾指数和脾指数呈现显著上升的趋势; 相比较肝胰脏质量和腹腔脂肪指数, 则在第1和第2周就出现了显著的下降。这表明在越冬期间, 肝胰脏和腹腔脂肪组织均在第一时间进行了能量动员, 供应鱼体进行了能量消耗, 这也许是鱼体为了适应氧化应激状态下, 需要能量物质进行消耗进而来维持正常生理状态的一种保护性手段[20]。
3.2 不同越冬时间对草鱼组织抗氧化指标的影响
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
3.3 不同越冬时间对草鱼肝胰脏、肌肉和脂肪组织脂肪酸组成的影响
这里选择越冬胁迫期间所受氧化应激程度最大的3个组织: 肝胰脏、肌肉和脂肪组织。在不同时间越冬胁迫处理下, 脂肪酸比例均有显著不同。这反映出了不同时间越冬胁迫下, 脂质动员出现了组织特异性。PCA分析表明, 肝胰脏中PUFA比例变化, 肌肉中C18﹕2n-6和C16﹕0比例变化, 腹腔脂肪中PUFA、n-6PUFA、SFA和MUFA比例变化对总体脂肪酸比例产生了主要影响, 脂肪酸比例种类差异较为明显[16, 31]。脂肪组织中PUFA、n-6PUFA和MUFA比例显著下降后上升保持稳定, SFA比例显著上升后下降保持稳定; 肝胰脏PUFA比例显著上升; 肌肉中C16﹕0和C18﹕2n-6比例显著下降。尤其是功能性脂肪酸的代表之一PUFA, 在肝胰脏、肌肉和脂肪组织比例变化的趋势更能体现越冬胁迫下, 组织应对越冬胁迫所表现的组织特异性, 脂肪组织中PUFA和n-6PUFA也可能进行了供能; 肝胰脏PUFA比例变化的上升, 表明鱼体为了维持某些特殊生物学功能而间接保留PUFA; 肌肉PUFA比例的变化对总脂肪酸变化贡献不大, 但C18﹕2n-6比例变化的下降可能预示着进行了供能。
3.4 不同越冬时间对草鱼肝胰脏、肌肉和脂肪组织脂肪酸组成和抗氧化能力相关指标关联性的影响
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
4. 结论
综上所述, 草鱼在越冬胁迫过程中, 生物学性状变化的结果表明了草鱼为了适应越冬胁迫下能量动员的需要采取了适应性调节, 同时, 我们证明了越冬期间所有氧化胁迫应激最大的3个组织分别是脂肪组织、肝胰脏和肌肉, 同时与越冬期间作为主要能量物质消耗的脂肪酸间进行了一种关联性分析, 确定了几种主要脂肪酸种类(肝胰脏MUFA, 肌肉PUFA、MUFA, 脂肪组织SFA)在越冬期间对氧化应激乃至机体损伤的直接相互联系。本研究提供的基准信息, 可用于制定有效的越冬胁迫期之前的投喂策略, 同时在越冬胁迫期间和越冬胁迫后的恢复阶段, 做出适当管理和精准的投喂决策, 以期改善草鱼越冬胁迫后的存活率和生产的效率。
-
图 1 实验装置图
a. 固定支架; b. 曝气水; c. 呼吸软管; d. 记录电极; e. 参比电极; f. 接地电极; g. 前置放大器; h. 纱布; i. 实验鱼; j. 水下扬声器; k. 水槽
Figure 1. Experimental device
a. Fixed bracket; b. Aeration water; c. Breathing hose; d. Recording electrode; e. Reference electrode; f. Ground electrode; g. Pre-amplifier; h. Gauze; I. Experimental fish; j. Underwater speaker; k. Epoxy resin sink
-
[1] 石妮, 李英文, 刘智皓, 等. 噪声对鱼类的影响. 重庆师范大学学报(自然科学版), 2017, 34(4): 28-32. Shi N, Li Y W, Liu Z H, et al. Influence of noise on fish [J]. Journal of Chongqing Normal University (Natural Science), 2017, 34(4): 28-32.
[2] 邢彬彬, 殷雷明, 张国胜, 等. 鱼类的听觉特性与应用研究进展 [J]. 海洋渔业, 2018, 40(4): 495-503. doi: 10.3969/j.issn.1004-2490.2018.04.013 Xing B B, Yin L M, Zhang G S, et al. Progress on the auditory characteristics of fish and their application [J]. Marine Fisheries, 2018, 40(4): 495-503. doi: 10.3969/j.issn.1004-2490.2018.04.013
[3] 陈帅, 黄洪亮, 张国胜, 等. 音响驯化对鱼类有效作用范围的研究 [J]. 渔业现代化, 2013, 40(1): 36-39. Chen S, Huang H L, Zhang G S, et al. Research on the effective range of the acoustic conditioning [J]. Fishery Modernization, 2013, 40(1): 36-39.
[4] Ladich F, Fay R R. Auditory evoked potential audiometry in fish [J]. Reviews in Fish Biology and Fisheries, 2013, 23(3): 317-364. doi: 10.1007/s11160-012-9297-z
[5] Meyer M, Popper A N, Fay R R. Coding of sound direction in the auditory periphery of the lake sturgeon, Acipenser fulvescens [J]. Journal of Neurophysiology, 2012, 107(2): 658-665. doi: 10.1152/jn.00390.2011
[6] 孙立元, 危起伟, 张辉, 等. 基于水声学的长江上游向家坝至宜宾江段鱼类空间分布特征 [J]. 淡水渔业, 2014, 44(1): 53-58. doi: 10.3969/j.issn.1000-6907.2014.01.010 Sun L Y, Wei Q W, Zhang H, et al. Surveys on spatial distribution of fishes based on hydroacoustics from Xiangjiaba Dam to Yibin reach of the Upper Yangtze River [J]. Freshwater Fisheries, 2014, 44(1): 53-58. doi: 10.3969/j.issn.1000-6907.2014.01.010
[7] 张旭光, 郭弘艺, 宋佳坤. 褐菖鲉的听觉阈值研究 [J]. 水生生物学报, 2018, 42(3): 593-598. doi: 10.7541/2018.074 Zhang X G, Guo H Y, Song J K. Thresholds for the hearing of marbled rockfish Sebasticus marmoratus [J]. Acta Hydrobiologica Sinica, 2018, 42(3): 593-598. doi: 10.7541/2018.074
[8] Kenyon T N, Ladich F, Yan H Y. A comparative study of hearing ability in fishes: the auditory brainstem response approach [J]. Journal of Comparative Physiology A, 1998, 182(3): 307-318. doi: 10.1007/s003590050181
[9] Lovell J M, Findlay M M, Nedwell J R, et al. The hearing abilities of the silver carp (Hypopthalmichthys molitrix) and bighead carp (Aristichthys nobilis) [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2006, 143(3): 286-291.
[10] 陈曾龙. 长江鲟鱼类资源的保护和利用 [J]. 湖北农学院学报, 1998(4): 334-336. Chen Z L. Protection and utilization of sturgeon resources in Yangtze River [J]. Journal of Hubei Agricultural College, 1998(4): 334-336.
[11] Lovell J M, Findlay M M, Moate R M, et al. The inner ear morphology and hearing abilities of the Paddlefish (Polyodon spathula) and the Lake Sturgeon (Acipenser fulvescens) [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2005, 142(3): 286-296.
[12] Johnston C E, Phillips C T. Sound production in sturgeon Scaphirhynchus albus and S. platorynchus (Acipenseridae) [J]. Environmental Biology of Fishes, 2003, 68(1): 59-64. doi: 10.1023/A:1026015912420
[13] 孙立元. 筑坝对河流鱼类空间分布影响的水声学研究 [D]. 武汉: 华中农业大学, 2013: 18-25. Sun L Y. Effects of damming on spatial distribution of river fishes: revealed by fisheries acoustic method [D]. Wuhan: Huazhong Agricultural University, 2013: 18-25.
[14] Celi M, Filiciotto F, Maricchiolo G, et al. Vessel noise pollution as a human threat to fish: assessment of the stress response in gilthead sea bream (Sparus aurata, Linnaeus 1758) [J]. Fish Physiology and Biochemistry, 2016, 42(2): 631-641. doi: 10.1007/s10695-015-0165-3
[15] Voellmy I K, Purser J, Flynn D, et al. Acoustic noise reduces foraging success in two sympatric fish species via different mechanisms [J]. Animal Behaviour, 2014(89): 191-198. doi: 10.1016/j.anbehav.2013.12.029
[16] Halvorsen M B, Casper B M, Matthews F, et al. Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker [J]. Proceedings Biological Sciences, 2012, 279(1748): 4705-4714.
[17] Codarin A, Wysocki L E, Ladich F, et al. Effects of ambient and boat noise on hearing and communication in three fish species living in a marine protected area (Miramare, Italy) [J]. Marine Pollution Bulletin, 2009, 58(12): 1880-1887. doi: 10.1016/j.marpolbul.2009.07.011
[18] Chen H, Wang B, Zhou B, et al. Characterization, phylogeny, and responses of leptin to different nutritional states in critically endangered Yangtze sturgeon (Acipenser dabryanus) [J]. Aquaculture, 2020(525): 735296. doi: 10.1016/j.aquaculture.2020.735296
[19] 胡鹏涛. 大型船舶噪声测量与控制方法探析 [J]. 电子制作, 2018(S1): 66-67. doi: 10.3969/j.issn.1006-5059.2018.03.027 Hu P T. Analysis of measurement and control methods of large ship noise [J]. Practical Electronics, 2018(S1): 66-67. doi: 10.3969/j.issn.1006-5059.2018.03.027
[20] 孙雪荣, 朱锡. 船舶水下结构噪声的研究概况与趋势 [J]. 振动与冲击, 2005, 24(1): 106-113. doi: 10.3969/j.issn.1000-3835.2005.01.029 Sun X R, Zhu X. Survey and tendency of study on the underwater noise of ship structure [J]. Journal of Vibration and Shock, 2005, 24(1): 106-113. doi: 10.3969/j.issn.1000-3835.2005.01.029