EXHAUSTION EXERCISE STRESS ON HYPOXIA AND THERMAL TOLERANCES OF THREE CYPRINID SPECIES
-
摘要:
为了研究力竭运动胁迫对不同生境鱼类低氧耐受和热耐受能力的影响, 以金鱼(Carassius auratus)、中华倒刺鲃(Spinibarbus sinensis)和鲤(Cyprinus carpio)为研究对象, 分别测定这3种鲤科鱼类在力竭运动后的临界氧压(Critical oxygen tension, Pcrit)、失衡点(Loss of equilibrium, LOE)、临界代谢率(Critical metabolic rate, CMR)、边际代谢率(Marginal metabolic rate, Marginal MR)和临界温度[Critical temperature, CT(临界高温, CTmax和临界低温, CTmin)、致死温度LT(致死高温, LTmax和致死低温, LTmin)]。结果显示, 仅CTmin具有体重效应, 其余各参数的体重效应均不显著; 低氧耐受和热耐受各参数在种间差异均显著; 力竭运动胁迫导致了鲤的Pcrit和3种鱼的CMR显著增加, 但致使中华倒刺鲃的LOE显著降低; 同时, 也导致金鱼和中华倒刺鲃的CTmax显著下降; 除了上述鱼种及其对应的实验参数外, 对各鱼种的全体实验参数均无显著影响。研究表明, 不同生境鱼类在力竭运动胁迫后低氧耐受和热耐受能力变化具有差异, 且不同鱼类在力竭运动胁迫后, 若再次遭受其他环境因子胁迫时具有不同的生理响应机制, 这可能与其能量代谢模式有关。
Abstract:The hypoxia and thermal tolerances of fish are important physiological characteristics that determine their distribution, habitat change, and adaptability to climate change. While in the nature, fish are always in the process of swimming or recovery of post-exercise, whether the hypoxia and thermal tolerances change during swimming or immediately after exhaustive recovery process is unknown for fish. Thus, to study the effects of exhaustion exercise stress on fish hypoxia and thermal tolerances, we investigated three cyprinid fish species (i.e. Carassius auratus, Spinibarbus sinensis and Cyprinus carpio) living in different habitats as study cases. Hypoxia and the thermal tolerance indicators of the three fish species were measured after exhaustion exercise, respectively, to determine whether exhaustion exercise stress would affect the stress resistance of fish. In the present study, we found that body weight only affected significantly on minimal critical temperature (CTmin), and the indicators of hypoxia and thermal tolerances were different significantly between species. Moreover, exhaustion exercise stress led to a significant increase in critical oxygen tension (Pcrit) of common carp and a significant increase in critical metabolic rate (CMR) of all the three species as well, but a significant decrease in point of oxygen tension for loss of equilibrium (LOE) of qingbo. Meanwhile, it also resulted in a significant decrease in maximal critical temperature (CTmax) of goldfish and qingbo. However, there was no significant effect on the species and other related measured parameters besides the fish species and their corresponding experimental parameters mentioned above. It could be said based on the results that changes in the hypoxia and thermal tolerances of fish living in different habitats are different after exhaustion exercise stress, and that fish species vary in physiological mechanisms responding to other environmental stressors following exhaustion exercise stress, which may be related to difference in their energy metabolism patterns.
-
Keywords:
- Exhaustion exercise /
- Pcrit /
- LOE /
- CT /
- LT /
- Energy metabolism /
- Cyprinid species
-
-
图 1 溶氧水平对金鱼(a)、中华倒刺鲃(b)和鲤(c)代谢率的影响
1. 鲤力竭组因作图时误操作导致前6尾鱼原始数据丢失, 图中只包含8尾鱼的数据, 但未影响其他数据统计结果; 2. 图中中华倒刺鲃和鲤的力竭组数据均取自换水后, 金鱼取25min之后的数据
Figure 1. The effect of dissolved oxygen level on metabolic rate of goldfish (a), qingbo (b) and common carp (c)
1. Due to a mis-operation on the data of the common carp exhaustion group, the original data of the first 6 fish are lost, and only the data of the remaining 8 fish are included in the figure, fortunately the statistics are not affected; 2. The exhaustion group data of the qingbo and common carp in the figure are collected after water change, and after 25min for the goldfish
图 2 力竭运动胁迫对各低氧耐受特征参数的影响(平均值±标准差)
图中小写字母表示种间差异显著, NA表示数据值均为0不可用, *表示种内差异显著(P<0.05), **表示种内差异极显著(P<0.01); 图 3同
Figure 2. The influence of exhaustion exercise stress on the hypoxic tolerance indicators (mean±SD)
Small letters indicate that the difference significance among species, NA indicates that the datum is not available, *indicates that the differences between the exhaustion group and the control group is significant (P<0.05), and **represents P<0.01, the same applies in Fig. 3
表 1 低氧耐受实验各组别实验鱼样本量及体重和体长(平均值±标准差)
Table 1 The sample size, wet weight, and body length of experimental fish in each group of the hypoxia tolerance experiment (mean±SD)
种类
Species组别
Group样本量
Sample size体重
Body mass (g)体长
Body length (cm)金鱼
Goldfish对照组Control 12 4.61±1.11 5.06±0.38 力竭组Exhausted 14 4.99±0.99 5.30±0.27 中华倒刺鲃
Qingbo对照组Control 12 7.69±1.16 7.18±0.36 力竭组Exhausted 12 8.20±1.67 7.28±0.48 鲤
Common carp对照组Control 11 5.01±1.00 5.75±0.35 力竭组Exhausted 13 4.48±0.67 5.56±0.32 注: 各组间样本量有所差异是因适应期间实验鱼从适应装置内逃逸等意外情况导致; 下同Note: The difference in sample size among groups is due to unexpected fish’s escape from the adaptation device; The same applies below 表 2 热耐受实验各组别实验鱼样本量及体重和体长(平均值±标准差)
Table 2 The sample size, wet weight, and body length of experimental fish in each group of the thermal tolerance experiment (mean±SD)
种类
Species热耐受
Thermal tolerant组别
Group样本量
Sample size体重
Body mass (g)体长
Body length (cm)金鱼
Goldfish高温耐受
High temperature tolerance对照组Control 11 3.40±0.22 4.75±0.21 力竭组Exhausted 12 3.55±0.28 4.76±0.18 低温耐受
Low temperature tolerance对照组Control 8 5.98±0.56 5.81±0.24 力竭组Exhausted 9 5.71±0.68 5.66±0.34 中华倒刺鲃
Qingbo高温耐受
High temperature tolerance对照组Control 13 5.56±0.99 6.42±0.44 力竭组Exhausted 13 5.79±1.04 6.45±0.42 低温耐受
Low temperature tolerance对照组Control 10 6.61±0.24 6.81±0.68 力竭组Exhausted 9 6.11±1.38 6.64±0.50 鲤
Common carp高温耐受
High temperature tolerance对照组Control 14 5.13±0.72 5.89±0.43 力竭组Exhausted 13 5.12±0.86 5.88±0.38 低温耐受
Low temperature tolerance对照组Control 13 4.77±1.21 5.75±0.28 力竭组Exhausted 13 5.26±0.99 5.83±0.35 表 3 种类和力竭运动胁迫对实验参数的无交互双因素协方差分析表
Table 3 The Table of non-interactive two-way ANOVA of experimental parameters for species and exhaustion exercise stress treatment
参数
Parameter体重
Mass处理
Treatment种类
Species临界氧压Pcrit F=0.042 P=0.838 F=7.122 P=0.009 F=13.896 P<0.001 临界代谢率CMR F=2.894 P=0.093 F=14.497 P<0.001 F=16.074 P<0.001 失衡点LOE F=3.667 P=0.060 F=0.339 P=0.562 F=116.611 P<0.001 边际代谢率Marginal MR F=0.205 P=0.652 F=0.462 P=0.499 F=26.304 P<0.001 临界高温CTmax F=0.636 P=0.428 F=22.430 P<0.001 F=21.744 P<0.001 致死高温LTmax F=0.234 P=0.630 F=0.230 P=0.633 F=4.364 P=0.016 临界低温CTmin F=10.818 P=0.002 F=0.001 P=0.971 F=86.426 P<0.001 致死低温LTmin F=0.811 P=0.372 F=0.351 P=0.556 F=382.576 P<0.001 -
[1] 付世建, 曹振东, 曾令清, 等. 鱼类游泳运动-策略与适应性进化 [M]. 北京: 科学出版社, 2014: 32, 80. Fu S J, Cao Z D, Zeng L Q, et al. Fish Swimming: Strategy and Adaptive Evolution [M]. Beijing: Science Press, 2014: 32, 80.
[2] Handelsman C, Claireaux G, Nelson J A. Swimming ability and ecological performance of cultured and wild European Sea bass (Dicentrarchus labrax) in coastal tidal ponds [J]. Physiological and Biochemical Zoology, 2010, 83(3): 435-445. doi: 10.1086/651099
[3] Ern R. A mechanistic oxygen- and temperature-limited metabolic niche framework [J]. Philosophical Transactions of the Royal Society of London series B, Biological Sciences, 2019, 374(1778): 20180540. doi: 10.1098/rstb.2018.0540
[4] 李秀明, 张耀光, 何春梅, 等. 力竭追赶训练对两种鲤科鱼类呼吸循环系统参数和力竭运动后代谢特征的影响 [J]. 水生生物学报, 2019, 43(1): 78-85. doi: 10.7541/2019.010 Li X M, Zhang Y G, He C M, et al. The effect of exhaustive chasing training on parameters of respiratory and circulatory system and excess post-exercise oxygen consumption in juvenile qingbo (Spinibarbus sinensis) and rock carp (Procypris rabaudi) [J]. Acta Hydrobiologica Sinica, 2019, 43(1): 78-85. doi: 10.7541/2019.010
[5] 刘欢, 李秀明, 付世建, 等. 锦鲫幼鱼标准代谢率与生长性能的关联 [J]. 水生生物学报, 2016, 40(4): 836-842. doi: 10.7541/2016.108 Liu H, Li X M, Fu S J, et al. The correlations between standard metabolic rate and growth performance in juvenile gold fish [J]. Acta Hydrobiologica Sinica, 2016, 40(4): 836-842. doi: 10.7541/2016.108
[6] 胡月, 付世建, 朱文兰, 等. 周期性变温对中华倒刺鲃幼鱼生长和热耐受的影响 [J]. 重庆师范大学学报(自然科学版), 2022, 39(3): 42-47. Hu Y, Fu S J, Zhu W L, et al. The effect of diel-fluctuating temperature acclimation on the growth performance and thermal tolerance in juvenile qingbo [J]. Journal of Chongqing Normal University (Natural Science), 2022, 39(3): 42-47.
[7] 李秀明, 付世建, 张耀光. 饥饿对鲤幼鱼内脏器官指数和力竭运动后代谢特征的影响 [J]. 水生生物学报, 2021, 45(2): 259-266. doi: 10.7541/2021.2019.167 Li X M, Fu S J, Zhang Y G. Effects of starvation on index of visceral organs and excess post-exercise oxygen consumption of juvenile common carp (Cyprinus carpio) [J]. Acta Hydrobiologica Sinica, 2021, 45(2): 259-266. doi: 10.7541/2021.2019.167
[8] 陈波见, 曹振东, 付世建, 等. 温度对鳊鱼静止代谢和耐低氧能力的影响 [J]. 动物学杂志, 2010, 45(5): 1-8. doi: 10.13859/j.cjz.2010.05.001 Chen B J, Cao Z D, Fu S J, et al. Temperature effect on rest metabolic rate and hypoxia tolerance in Chinese bream (Parabramis pekinensis) [J]. Chinese Journal of Zoology, 2010, 45(5): 1-8. doi: 10.13859/j.cjz.2010.05.001
[9] 郭鹤. 温度驯化对齐口裂腹鱼热耐受和生长代谢的影响 [D]. 重庆: 西南大学, 2019: 1-4. Guo H. Effects of temperature acclimation on the heat tolerance and growth metabolism in Schizothorax prenanti [D]. Chongqing: Southwest University, 2019: 1-4.
[10] Chen L Y, Heath A G, Neves R J. Comparison of oxygen consumption in freshwater mussels (Unionidae) from different habitats during declining dissolved oxygen concentration [J]. Hydrobiologia, 2001, 450(1-3): 209-214.
[11] 李可贵. 摄食、力竭性运动及其交互作用对鲇鱼幼鱼代谢及酸碱状态的影响 [D]. 重庆: 重庆师范大学, 2010: 4-7. Li K G. The metabolic responses and acid-base status after feeding, exhaustive exercise, and both feeding and exhaustive exercise in juvenile Chinese catfish (Silurus asotus Linnaeus) [D]. Chongqing: Chongqing Normal University, 2010: 4-7.
[12] Sollid J, Weber R E, Nilsson G E. Temperature alters the respiratory surface area of crucian carp (Carassius carassius) and goldfish (Carassius auratus) [J]. Journal of Experimental Biology, 2005, 208(Pt 6): 1109-1116.
[13] Mamun S M, Focken U, Becker K. A respirometer system to measure critical and recovery oxygen tensions of fish under simulated diurnal fluctuations in dissolved oxygen [J]. Aquaculture International, 2013, 21(1): 31-44. doi: 10.1007/s10499-012-9529-1
[14] Barnes R, King H, Carter C G. Hypoxia tolerance and oxygen regulation in Atlantic salmon, Salmo salar from a Tasmanian population [J]. Aquaculture, 2011, 318(3-4): 397-401. doi: 10.1016/j.aquaculture.2011.06.003
[15] He W, Cao Z D, Fu S J. Effect of temperature on hypoxia tolerance and its underlying biochemical mechanism in two juvenile cyprinids exhibiting distinct hypoxia sensitivities [J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2015, 187(1): 232-241.
[16] Shelford V E. Some concepts of bioecology [J]. Ecology, 1931, 12(3): 455-467. doi: 10.2307/1928991
[17] Mark F C, Bock C, Pörtner H O. Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and (31)P-MRS [J]. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 2002, 283(5): 1254-1262. doi: 10.1152/ajpregu.00167.2002
[18] 周龙艳. 长江流域几种珍稀鱼类对环境因子胁迫的生理与行为响应研究 [D]. 重庆: 重庆师范大学, 2020: 8-22. Zhou L Y. Physiological and behavioral responses to environmental stress of several endangered fish species in the Yangtze River [D]. Chongqing: Chongqing Normal University, 2020: 8-22.
[19] 付成. 尾鳍缺失对三种鲤科鱼类运动能力和代谢竞争模式的影响 [D]. 重庆: 重庆师范大学, 2013: 1-3. Fu C. The effects of caudal fin amputation on swimming performance and metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish species with different metabolic modes [D]. Chongqing: Chongqing Normal University, 2013: 1-3.
[20] Zhang W, Cao Z D, Fu S J. The effects of dissolved oxygen levels on the metabolic interaction between digestion and locomotion in Cyprinid fishes with different locomotive and digestive performances [J]. Journal of Comparative Physiology B, 2012, 182(5): 641-650. doi: 10.1007/s00360-012-0644-0
[21] Pörtner H O. Oxygen-and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems [J]. Journal of Experimental Biology, 2010, 213(6): 881-893. doi: 10.1242/jeb.037523
[22] Eid I I, Bhassu S, Goh Z H, et al. Molecular characterization and gene evolution of the heat shock protein 70 gene in snakehead fish with different tolerances to temperature [J]. Biochemical Systematics and Ecology, 2016, 66(1): 137-144.
[23] Singh S P, Ahmad T, Sharma J G, et al. Effect of temperature on food consumption, immune system, antioxidant enzymes, and heat shock protein 70 of Channa punctata (Bloch, 1793) [J]. Fish Physiology and Biochemistry, 2021, 47(1): 79-91. doi: 10.1007/s10695-020-00896-4
[24] Bayse S M, Shaughnessy C A, Regish A M, et al. Upper thermal tolerance and heat shock protein response of juvenile American shad (Alosa sapidissima) [J]. Estuaries and Coasts, 2020, 43(1): 182-188. doi: 10.1007/s12237-019-00642-x
[25] Mottola G, Nikinmaa M, Anttila K. Hsp70s transcription-translation relationship depends on the heat shock temperature in zebrafish [J]. Comparative Biochemistry and Physiology Part A,Molecular & Integrative Physiology, 2020, 240(1): 110629.
[26] 夏继刚, 黄艳, 付世建, 等. 斑马鱼热耐受性对温度驯化的响应及其性别差异 [J]. 生态学杂志, 2019, 38(8): 2477-2481. doi: 10.13292/j.1000-4890.201908.034 Xia J G, Huang Y, Fu S J, et al. Gender differences in thermal tolerance of zebrafish in response to temperature acclimation [J]. Chinese Journal of Ecology, 2019, 38(8): 2477-2481. doi: 10.13292/j.1000-4890.201908.034