TRANSCRIPTOME-BASED ANALYSIS OF OVIPAROUS AND OVOVIVIPAROUS-RELATED GENE EXPRESSION IN ARTEMIA
-
摘要: 为揭示卤虫(Artemia)不同繁殖模式的发生机制, 文章通过构建孤雌生殖卤虫卵生和卵胎生差异转录组文库并结合生物信息学分析, 对两种繁殖模式间的差异表达基因进行查找筛选, 然后利用qRT-PCR对候选繁殖模式相关基因的表达进行分析。转录组测序显示有1452个差异表达基因, 包括601个上调基因和851个下调基因。根据差异表达基因GO功能分类结果可知, 注释到生物过程、细胞组成和分子功能的unigene分别有1243、306和530个。KEGG富集分析结果显示差异基因显著富集在抗原加工和核糖体通路中。结合转录组分析, 进一步筛选得到6个生殖相关基因, 并针对不同繁殖模式下的卤虫进行qRT-PCR, 结果表明, 6个生殖相关基因在卵生卤虫卵巢中的表达量均显著高于卵胎生卤虫。此外, 对6个候选生殖相关基因编码的蛋白质保守结构域进行预测, 发现均与之前报道的相应基因保守结构域一致。综上所述, 研究所选择的6个基因可能影响参与了卤虫的生殖过程。研究结果为孤雌卤虫繁殖模式分子机制调控的研究提供了基础信息, 有助于完善卤虫的生殖生物学理论。Abstract: Artemia is not only one of the most important live feed for larvi culture, but also an ideal experimental organism for scientific research. Female Artemia produce either nauplii via ovoviviparous pathway or diapause cyst via oviparous pathway. In order to reveal the mechanism of different reproductive modes of Artemia, the reproductive differential transcriptomes of parthenogenetic Artemia were constructed, bioinformatics analysis were performed to screen reproductive differential expression genes, and the gene expression patterns were studied by using qRT-PCR. Transcriptome analysis showed that there were 1452 differentially expressed genes, of which 601 genes were up-regulated and 851 down-regulated in the abscising carpopodium. According to GO function classification, 1243306 and 530 unigene were annotated into biological process, cell composition and molecular function respectively. KEGG enrichment analysis showed that differential genes were significantly enriched in antigen processing and ribosome pathways. Combined with transcriptome data and qRT-PCR analysis, six reproductive-related genes were screened and verified. The results showed that all the six reproductive-related genes had higher expression in oviparous Artemia than in ovoviviparous Artemia. In addition, the conserved domains of the proteins encoded by six candidate reproductive related genes were predicted and phylogenetic trees were constructed respectively. The results showed that the protein domains were consistent with the previously reported reproductive genes. Over all, our study indicated that the selected six genes may influence the reproductive process of Artemia. This study provides valuable information for dissecting the molecular mechanism of reproductive pattern in the parthenogenetic Artemia, and may also help to refine the reproductive biological theory of Artemia.
-
Keywords:
- Transcriptome /
- Reproductive-related genes /
- Reproductive mode /
- Artemia
-
-
图 4 SLK、Dmrt3、Fem-1、CyclinB、5-HT和Nanos蛋白保守结构域预测
A. SLK蛋白; B. Dmrt3蛋白; C. Fem-1蛋白; D. CyclinB蛋白; E. 5-HT蛋白; F. Nanos蛋白
Figure 4. Prediction of conservative domains of SLK, Dmrt3, Fem-1, CyclinB, 5-HT and Nanos proteins
A. SLK protein; B. Dmrt3 protein; C. Fem-1 protein; D. CyclinB protein; E. 5-HT protein; F. Nanos protein
图 6 SLK、Dmrt3、fem-1、cyclinB、5-HT和Nanos基因在不同繁殖模式下的表达情况
相同字母表示差异不显著(P>0.05); 不同字母表示差异极显著(P<0.01); OVI. 卵生; OVOVI. 卵胎生
Figure 6. Expression of SLK, Dmrt3, fem-1, cyclinB, 5-HT and Nanos genes in different reproductive modes of Artemia oocysts
The same letter indicate no significant difference (P>0.05); the difference between different letters is the extremely remarkable difference (P<0.01); OVI: oviparous; OVOVI. ovoviviparous
表 1 qRT-PCR引物
Table 1 qRT-PCR primers
引物Primer 序列Sequence (5′—3′) 5-HT-F GCACCTCGAATCCCTTGAAC 5-HT-R GAAATCTTGAGCGCCTCTGG cyclin B-F ACGCCACAGTCATGAAGAGA cyclin B-R TCTTCTCAAATGCGCAGACG Nanos-F TGGTGAAGCCGAATTGATGC Nanos-R TTTCTTTCAGCGCGTGACTT Dmrt3-F CTGCAACAGGAGCCTCAATC Dmrt3-R TGGAGTTGTAGTCGGAGTCG fem-1-F ACGCCTTAGAAATGCAGCAG fem-1-R TCACAGTCAAGACCCGTTGA SLK-F AAAGGCAACTCAAGCACCAG SLK-R ACTTCCCGTGAATGTCACCT β-actin-F GTGTGACGATGATGTTGCGG β-actin-R GCTGTCCTTTTGACCCATTCC 表 2 Unigene序列在公共数据库中的注释结果
Table 2 Comment results of the unigene sequence in the public database
数据库Database 注释基因数量
Number of
annotated genes注释百分比
Annotation
percentage (%)NR数据库 33184 34.15 NT数据库 12641 13.01 PFAM数据库 36049 37.10 KO数据库 20595 21.20 KOG/COG数据库 19946 20.53 Swiss-prot数据库 31480 32.40 GO数据库 36331 37.39 在所有数据库中均注释 4109 4.22 合计ALL 97146 100.00 表 3 卤虫表达上调和下调基因富集的10个信号通路
Table 3 The top -ten enriched pathways of up -regulated and down-regulated unigene in Artemia
通路名称
Pathway_term富集因子
Rich_factorQ值
Q value基因数
Gene_
number上调表达基因
Up-regulated unigene蛋白质消化吸收
Protein digestion and absorption0.047619048 0.000168817 10 阿米巴疾病
Amoebiasis0.044025157 0.005670205 7 叶酸生物合成
Folate biosynthesis0.076923077 0.108059701 3 甘油脂代谢
Glycerolipid metabolism0.035714286 0.141920793 4 细胞外基质受体相互作用
ECM-receptor interaction0.027777778 0.141920793 5 谷胱甘肽代谢
Glutathione metabolism0.032786885 0.141920793 4 小细胞肺癌
Small cell lung cancer0.032520325 0.141920793 4 PI3K-Akt信号通路PI3K-Akt signaling pathway 0.017130621 0.141920793 8 化学致癌作用
Chemical carcinogenesis0.044776119 0.141920793 3 肾素-血管紧张素系统Renin-angiotensin system 0.044117647 0.141920793 3 下调表达基因
Down-regulated unigene核糖体
Ribosome0.063157895 4.68E-12 54 抗原处理和呈递
Antigen processing and presentation0.159722222 4.68E-12 23 长寿调节途径-多种生物
Longevity regulating pathway-multiple species0.081730769 5.20E-05 17 溶酶体
Lysosome0.063333333 0.00030973 19 军团菌病
Legionellosis0.077348066 0.000509087 14 胰岛素抵抗
Insulin resistance0.067961165 0.001609763 14 细胞凋亡
Apoptosis0.048192771 0.003953602 20 麻疹Measles 0.064327485 0.011564643 11 吞噬体
Phagosome0.044776119 0.014675213 18 弓形虫病
Toxoplasmosis0.057803468 0.034988835 10 -
[1] Dattilo A M, Bracchini L, Carlini L, et al. Estimate of the effects of ultraviolet radiation on the mortality of Artemia franciscana in naupliar and adult stages [J]. International Journal of Biometeorology, 2005, 49(6): 388-395. doi: 10.1007/s00484-005-0255-5
[2] Liang P, MacRae T H. The synthesis of a small heat shock/alpha-crystallin protein in Artemia and its relationship to stress tolerance during development [J]. Developmental Biology, 1999, 207(2): 445-456. doi: 10.1006/dbio.1998.9138
[3] Chen S, Chen D F, Yang F, et al. Characterization and processing of superoxide dismutase-fused vitellogenin in the diapause embryo formation: a special developmental pathway in the brine shrimp, Artemia parthenogenetica [J]. Biology of Reproduction, 2011, 85(1): 31-41. doi: 10.1095/biolreprod.110.090340
[4] Yang F, Jia S N, Yu Y Q, et al. Deubiquitinating enzyme BAP1 is involved in the formation and maintenance of the diapause embryos of Artemia [J]. Cell Stress and Chaperones, 2012, 17(5): 577-587. doi: 10.1007/s12192-012-0333-7
[5] Qiu Z, MacRae T H. Developmentally regulated synthesis of p8, a stress-associated transcription cofactor, in diapause-destined embryos of Artemia franciscana [J]. Cell Stress & Chaperones, 2007, 12(3): 255-264.
[6] Zhu X J, Feng C Z, Dai Z M, et al. AMPK alpha subunit gene characterization in Artemia and expression during development and in response to stress [J]. Stress, 2007, 10(1): 53-63. doi: 10.1080/10253890601130773
[7] Zhou R, Yang F, Chen D F, et al. Acetylation of chromatin-associated histone H3 lysine 56 inhibits the development of encysted Artemia embryos [J]. PLoS One, 2013, 8(6): e68374. doi: 10.1371/journal.pone.0068374
[8] Maher C A, Kumar-Sinha C, Cao X, et al. Transcriptome sequencing to detect gene fusions in cancer [J]. Nature, 2009, 458(7234): 97-101. doi: 10.1038/nature07638
[9] De Vos S, van Stappen G, Sorgeloos P, et al. Identification of salt stress response genes using the Artemia transcriptome [J]. Aquaculture, 2019(500): 305-314. doi: 10.1016/j.aquaculture.2018.09.067
[10] Valenzuela-Miranda D, Gallardo-Escárate C, Valenzuela-Muñoz V, et al. Sex-dependent transcriptome analysis and single nucleotide polymorphism (SNP) discovery in the brine shrimp Artemia franciscana [J]. Marine Genomics, 2014(18): 151-154. doi: 10.1016/j.margen.2014.10.007
[11] 王智超. 光周期、盐度、温度对孤雌卤虫的滞育诱导效应研究 [D]. 青岛: 中国海洋大学, 2015. Wang Z C. The diapause induction of parthenogenetic Artemia-studies on combined effects of environmental factors, sensitive stages, and expression of related proteins [D]. Qingdao: Ocean University of China, 2015.
[12] 曹继敏, 李双财, 何德. 镉胁迫后旱柳转录组变化分析 [J]. 生物工程学报, 2020, 36(7): 1365-1377. doi: 10.13345/j.cjb.190486 Cao J M, Li S C, He D. Transcriptome analysis of Salix matsudana under cadmium stress [J]. Chinese Journal of Biotechnology, 2020, 36(7): 1365-1377. doi: 10.13345/j.cjb.190486
[13] Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. Nature Biotechnology, 2011, 29(7): 644-652. doi: 10.1038/nbt.1883
[14] 刘慧芬, 卢良盛, 王静, 等. 基于转录组测序技术筛选花䱻卵巢发育相关基因 [J]. 水产学报, 2019, 43(8): 1714-1722. Liu H F, Lu L S, Wang J, et al. Transcriptome analysis of spotted steed (Hemibarbus maculatus Bleeker) to identify genes related to ovary development [J]. Journal of Fisheries of China, 2019, 43(8): 1714-1722.
[15] 江红霞, 刘慧芬, 马晓, 等. 转录组测序筛选克氏原螯虾卵巢发育、免疫和生长相关基因 [J]. 水产学报, 2021, 45(3): 396-414. Jiang H X, Liu H F, Ma X, et al. Transcriptome analysis of Procambarus clarkii oscreen genes related to ovary development, immunity and growth [J]. Journal of Fisheries of China, 2021, 45(3): 396-414.
[16] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CT method [J]. Nature Protocols, 2008, 3(6): 1101-1108. doi: 10.1038/nprot.2008.73
[17] Jiang H, Li X, Sun Y, et al. Insights into sexual precocity of female oriental river prawn Macrobrachium nipponense through transcriptome analysis [J]. PLoS One, 2016, 11(6): e0157173. doi: 10.1371/journal.pone.0157173
[18] Oliphant A, Alexander J L, Swain M T, et al. Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas [J]. BMC Genomics, 2018, 19(1): 711. doi: 10.1186/s12864-018-5057-3
[19] 董丽君, 孟宪红, 孔杰, 等. 基于转录组分析筛选凡纳滨对虾低温胁迫下的差异表达基因 [J]. 中国水产科学, 2019, 26(1): 161-171. doi: 10.3724/SP.J.1118.2019.18061 Dong L J, Meng X H, Kong J, et al. Screening of differentially expressed genes related to the cold tolerance in Litopenaeus vannamei based on high-throughput transcriptome sequencing [J]. Journal of Fishery Sciences of China, 2019, 26(1): 161-171. doi: 10.3724/SP.J.1118.2019.18061
[20] Muhd-Farouk H, Jasmani S, Ikhwanuddin M. Effect of vertebrate steroid hormones on the ovarian maturation stages of orange mud crab, Scylla olivacea (Herbst, 1796) [J]. Aquaculture, 2016(451): 78-86. doi: 10.1016/j.aquaculture.2015.08.038
[21] Tomy S, Saikrithi P, James N, et al. Serotonin induced changes in the expression of ovarian gene network in the Indian white shrimp, Penaeus indicus [J]. Aquaculture, 2016(452): 239-246. doi: 10.1016/j.aquaculture.2015.11.003
[22] 吴维福, 陈娈娈, 李郁娇, 等. 三丁基锡对罗氏沼虾血清中免疫酶活力的影响 [J]. 广东海洋大学学报, 2014, 34(3): 17-21. doi: 10.3969/j.issn.1673-9159.2014.03.004 Wu W F, Chen L L, Li Y J, et al. Effects of tributyltin on the activities of immunologic enzyme in blood serum of the Macrobrachium rosenbergill [J]. Journal of Guangdong Ocean University, 2014, 34(3): 17-21. doi: 10.3969/j.issn.1673-9159.2014.03.004
[23] Qiao H, Xiong Y, Zhang W, et al. Characterization, expression, and function analysis of gonad-inhibiting hormone in Oriental River prawn, Macrobrachium nipponense and its induced expression by temperature [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015(185): 1-8.
[24] Warrier S, Subramoniam T. Receptor mediated yolk protein uptake in the crab Scylla serrata: crustacean vitellogenin receptor recognizes related mammalian serum lipoproteins [J]. Molecular Reproduction and Development, 2002, 61(4): 536-548. doi: 10.1002/mrd.10106
[25] Chambard J C, Lefloch R, Pouysségur J, et al. ERK implication in cell cycle regulation [J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2007, 1773(8): 1299-1310. doi: 10.1016/j.bbamcr.2006.11.010
[26] Halm S, Ibañez A J, Tyler C R, et al. Molecular characterisation of growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) and their patterns of gene expression during the ovarian reproductive cycle in the European sea bass [J]. Molecular and Cellular Endocrinology, 2008, 291(1/2): 95-103.
[27] Patnaik S, Mohanty M, Bit A, et al. Molecular characterization of Activin Receptor Type IIA and its expression during gonadal maturation and growth stages in rohu carp [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2017(203): 1-10. doi: 10.1016/j.cbpb.2016.08.005
[28] Wang Z P, Mu X Y, Guo M, et al. Transforming growth factor-β signaling participates in the maintenance of the primordial follicle pool in the mouse ovary [J]. Journal of Biological Chemistry, 2014, 289(12): 8299-8311. doi: 10.1074/jbc.M113.532952
[29] 吴晓雅, 龚先宇, 谭树亮, 等. 低温诱导海蜇螅状体横裂生殖的分子信号调控机制初探 [J]. 海洋环境科学, 2021, 40(1): 66-72. doi: 10.12111/j.mes.20190262 Wu X Y, Gong X Y, Tan S L, et al. Preliminary study on the molecular signaling regulation mechanism in Rhopilema esculentum polyps strobilation induced by low temperature [J]. Marine Environmental Science, 2021, 40(1): 66-72. doi: 10.12111/j.mes.20190262
[30] Everaert C, Luypaert M, Maag J L V, et al. Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data [J]. Scientific Reports, 2017(7): 1559. doi: 10.1038/s41598-017-01617-3
[31] Clegg J S, Willsie J K, Jackson S A. Adaptive significance of a small heat shock/α-crystallin protein (p26) in encysted embryos of the brine shrimp, Artemia franciscana [J]. American Zoologist, 2015, 39(6): 836-847.
[32] Dai L, Chen D F, Liu Y L, et al. Extracellular matrix peptides of Artemia cyst shell participate in protecting encysted embryos from extreme environments [J]. PLoS One, 2011, 6(6): e20187. doi: 10.1371/journal.pone.0020187
[33] Yang F, Chen S, Dai Z M, et al. Regulation of trehalase expression inhibits apoptosis in diapause cysts of Artemia [J]. The Biochemical Journal, 2013, 456(2): 185-194. doi: 10.1042/BJ20131020
[34] Strange K, Denton J, Nehrke K. Ste20-type kinases: evolutionarily conserved regulators of ion transport and cell volume [J]. Physiology (Bethesda)
, 2006(21): 61-68. [35] Jo E, Lee S J, Choi E, et al. Sex-biased gene expression and isoform profile of brine shrimp Artemia franciscana by Transcriptome Analysis [J]. Animals (Basel)
, 2021, 11(9): 2630. [36] Zhou R, Sun Y X, Yang W J, et al. Identification and characterization of a Ste20-like kinase in Artemia and its role in the developmental regulation and resistance to environmental stress [J]. PLoS One, 2014, 9(3): e92234. doi: 10.1371/journal.pone.0092234
[37] Song C, Cui Z, Hui M, et al. Molecular characterization and expression profile of three Fem-1 genes in Eriocheir sinensis provide a new insight into crab sex-determining mechanism [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2015(189): 6-14. doi: 10.1016/j.cbpb.2015.07.003
[38] Shui Y, Liu G F, Xu Z H, et al. Exploring potential proteins associated with cyclin B 3′UTR in Procambarus clarkii oocytes [J]. Biochemical and Biophysical Research Communications, 2019, 517(3): 458-462. doi: 10.1016/j.bbrc.2019.07.104
[39] Nakeim J, Kornthong N, Saetan J, et al. Presence of serotonin and its receptor in the central nervous system and ovary and molecular cloning of the novel crab serotonin receptor of the blue swimming crab, Portunus pelagicus [J]. Acta Histochemica, 2020, 122(1): 151457. doi: 10.1016/j.acthis.2019.151457
[40] Draper B W, McCallum C M, Moens C B. nanos1 is required to maintain oocyte production in adult zebrafish [J]. Developmental Biology, 2007, 305(2): 589-598. doi: 10.1016/j.ydbio.2007.03.007
[41] 张琴琴, 周莉, 李志, 等. 多倍体银鲫nanos2等位多态性、共线性和表达模式分析 [J]. 水生生物学报, 2020, 44(5): 1087-1096. doi: 10.7541/2020.126 Zhang Q Q, Zhou L, Li Z, et al. Allelic diversification, syntenic alignment and expression patterns of nanos2 in polyploid gibel carp [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 1087-1096. doi: 10.7541/2020.126