基于转录组测序的卤虫卵生和卵胎生相关基因表达研究

欧阳雪梅, 郑毓毓, 韩学凯, 许如意, 隋丽英

欧阳雪梅, 郑毓毓, 韩学凯, 许如意, 隋丽英. 基于转录组测序的卤虫卵生和卵胎生相关基因表达研究[J]. 水生生物学报, 2023, 47(2): 323-331. DOI: 10.7541/2022.2021.0308
引用本文: 欧阳雪梅, 郑毓毓, 韩学凯, 许如意, 隋丽英. 基于转录组测序的卤虫卵生和卵胎生相关基因表达研究[J]. 水生生物学报, 2023, 47(2): 323-331. DOI: 10.7541/2022.2021.0308
OUYANG Xue-Mei, ZHENG Yu-Yu, HAN Xue-Kai, XU Ru-Yi, SUI Li-Ying. TRANSCRIPTOME-BASED ANALYSIS OF OVIPAROUS AND OVOVIVIPAROUS-RELATED GENE EXPRESSION IN ARTEMIA[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(2): 323-331. DOI: 10.7541/2022.2021.0308
Citation: OUYANG Xue-Mei, ZHENG Yu-Yu, HAN Xue-Kai, XU Ru-Yi, SUI Li-Ying. TRANSCRIPTOME-BASED ANALYSIS OF OVIPAROUS AND OVOVIVIPAROUS-RELATED GENE EXPRESSION IN ARTEMIA[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(2): 323-331. DOI: 10.7541/2022.2021.0308

基于转录组测序的卤虫卵生和卵胎生相关基因表达研究

基金项目: 天津市自然科学基金(18JCQNJC78500); 教育部长江学者和创新团队发展计划(IRT-17R81)资助
详细信息
    作者简介:

    欧阳雪梅(1997—), 女, 硕士研究生; 研究方向为卤水生物资源利用。E-mail: oy1505439426@163.com

    通信作者:

    隋丽英, 女, 博士, 教授; 研究方向为卤水生物资源利用。E-mail: suily@tust.edu.cn

  • 中图分类号: Q344+.1

TRANSCRIPTOME-BASED ANALYSIS OF OVIPAROUS AND OVOVIVIPAROUS-RELATED GENE EXPRESSION IN ARTEMIA

Funds: Supported by the Changjiang Scholars and Innovation Team Development Program of the Ministry of Education (IRT-17R81)
    Corresponding author:
  • 摘要: 为揭示卤虫(Artemia)不同繁殖模式的发生机制, 文章通过构建孤雌生殖卤虫卵生和卵胎生差异转录组文库并结合生物信息学分析, 对两种繁殖模式间的差异表达基因进行查找筛选, 然后利用qRT-PCR对候选繁殖模式相关基因的表达进行分析。转录组测序显示有1452个差异表达基因, 包括601个上调基因和851个下调基因。根据差异表达基因GO功能分类结果可知, 注释到生物过程、细胞组成和分子功能的unigene分别有1243、306和530个。KEGG富集分析结果显示差异基因显著富集在抗原加工和核糖体通路中。结合转录组分析, 进一步筛选得到6个生殖相关基因, 并针对不同繁殖模式下的卤虫进行qRT-PCR, 结果表明, 6个生殖相关基因在卵生卤虫卵巢中的表达量均显著高于卵胎生卤虫。此外, 对6个候选生殖相关基因编码的蛋白质保守结构域进行预测, 发现均与之前报道的相应基因保守结构域一致。综上所述, 研究所选择的6个基因可能影响参与了卤虫的生殖过程。研究结果为孤雌卤虫繁殖模式分子机制调控的研究提供了基础信息, 有助于完善卤虫的生殖生物学理论。
    Abstract: Artemia is not only one of the most important live feed for larvi culture, but also an ideal experimental organism for scientific research. Female Artemia produce either nauplii via ovoviviparous pathway or diapause cyst via oviparous pathway. In order to reveal the mechanism of different reproductive modes of Artemia, the reproductive differential transcriptomes of parthenogenetic Artemia were constructed, bioinformatics analysis were performed to screen reproductive differential expression genes, and the gene expression patterns were studied by using qRT-PCR. Transcriptome analysis showed that there were 1452 differentially expressed genes, of which 601 genes were up-regulated and 851 down-regulated in the abscising carpopodium. According to GO function classification, 1243306 and 530 unigene were annotated into biological process, cell composition and molecular function respectively. KEGG enrichment analysis showed that differential genes were significantly enriched in antigen processing and ribosome pathways. Combined with transcriptome data and qRT-PCR analysis, six reproductive-related genes were screened and verified. The results showed that all the six reproductive-related genes had higher expression in oviparous Artemia than in ovoviviparous Artemia. In addition, the conserved domains of the proteins encoded by six candidate reproductive related genes were predicted and phylogenetic trees were constructed respectively. The results showed that the protein domains were consistent with the previously reported reproductive genes. Over all, our study indicated that the selected six genes may influence the reproductive process of Artemia. This study provides valuable information for dissecting the molecular mechanism of reproductive pattern in the parthenogenetic Artemia, and may also help to refine the reproductive biological theory of Artemia.
  • 图  1   卵胎生与卵生卤虫卵巢中上调和下调的差异表达基因

    Figure  1.   Up-regulated and down-regulated differentially expressed genes in ovoviviparous vs oviparous Artemia ovary

    图  2   GO富集分析图

    Figure  2.   Enrichment scatter diagram of GO pathway

    图  3   KEGG pathway富集散点图

    Figure  3.   Enrichment scatter diagram of KEGG pathway

    图  4   SLK、Dmrt3、Fem-1、CyclinB、5-HT和Nanos蛋白保守结构域预测

    A. SLK蛋白; B. Dmrt3蛋白; C. Fem-1蛋白; D. CyclinB蛋白; E. 5-HT蛋白; F. Nanos蛋白

    Figure  4.   Prediction of conservative domains of SLK, Dmrt3, Fem-1, CyclinB, 5-HT and Nanos proteins

    A. SLK protein; B. Dmrt3 protein; C. Fem-1 protein; D. CyclinB protein; E. 5-HT protein; F. Nanos protein

    图  5   SLK、Dmrt3、Fem-1、CyclinB、5-HT和Nanos蛋白系统进化树

    Figure  5.   Phylogenetic tree of SLK, DMRT3, Fem-1, CyclinB, 5-HT and Nanos proteins

    图  6   SLKDmrt3fem-1cyclinB5-HTNanos基因在不同繁殖模式下的表达情况

    相同字母表示差异不显著(P>0.05); 不同字母表示差异极显著(P<0.01); OVI. 卵生; OVOVI. 卵胎生

    Figure  6.   Expression of SLK, Dmrt3, fem-1, cyclinB, 5-HT and Nanos genes in different reproductive modes of Artemia oocysts

    The same letter indicate no significant difference (P>0.05); the difference between different letters is the extremely remarkable difference (P<0.01); OVI: oviparous; OVOVI. ovoviviparous

    表  1   qRT-PCR引物

    Table  1   qRT-PCR primers

    引物Primer序列Sequence (5′—3′)
    5-HT-FGCACCTCGAATCCCTTGAAC
    5-HT-RGAAATCTTGAGCGCCTCTGG
    cyclin B-FACGCCACAGTCATGAAGAGA
    cyclin B-RTCTTCTCAAATGCGCAGACG
    Nanos-FTGGTGAAGCCGAATTGATGC
    Nanos-RTTTCTTTCAGCGCGTGACTT
    Dmrt3-FCTGCAACAGGAGCCTCAATC
    Dmrt3-RTGGAGTTGTAGTCGGAGTCG
    fem-1-FACGCCTTAGAAATGCAGCAG
    fem-1-RTCACAGTCAAGACCCGTTGA
    SLK-FAAAGGCAACTCAAGCACCAG
    SLK-RACTTCCCGTGAATGTCACCT
    β-actin-FGTGTGACGATGATGTTGCGG
    β-actin-RGCTGTCCTTTTGACCCATTCC
    下载: 导出CSV

    表  2   Unigene序列在公共数据库中的注释结果

    Table  2   Comment results of the unigene sequence in the public database

    数据库Database注释基因数量
    Number of
    annotated genes
    注释百分比
    Annotation
    percentage (%)
    NR数据库3318434.15
    NT数据库1264113.01
    PFAM数据库3604937.10
    KO数据库2059521.20
    KOG/COG数据库1994620.53
    Swiss-prot数据库3148032.40
    GO数据库3633137.39
    在所有数据库中均注释41094.22
    合计ALL97146100.00
    下载: 导出CSV

    表  3   卤虫表达上调和下调基因富集的10个信号通路

    Table  3   The top -ten enriched pathways of up -regulated and down-regulated unigene in Artemia

    通路名称
    Pathway_term
    富集因子
    Rich_factor
    Q
    Q value
    基因数
    Gene_
    number
    上调表达基因
    Up-regulated unigene
    蛋白质消化吸收
    Protein digestion and absorption
    0.0476190480.00016881710
    阿米巴疾病
    Amoebiasis
    0.0440251570.0056702057
    叶酸生物合成
    Folate biosynthesis
    0.0769230770.1080597013
    甘油脂代谢
    Glycerolipid metabolism
    0.0357142860.1419207934
    细胞外基质受体相互作用
    ECM-receptor interaction
    0.0277777780.1419207935
    谷胱甘肽代谢
    Glutathione metabolism
    0.0327868850.1419207934
    小细胞肺癌
    Small cell lung cancer
    0.0325203250.1419207934
    PI3K-Akt信号通路PI3K-Akt signaling pathway0.0171306210.1419207938
    化学致癌作用
    Chemical carcinogenesis
    0.0447761190.1419207933
    肾素-血管紧张素系统Renin-angiotensin system0.0441176470.1419207933
    下调表达基因
    Down-regulated unigene
    核糖体
    Ribosome
    0.0631578954.68E-1254
    抗原处理和呈递
    Antigen processing and presentation
    0.1597222224.68E-1223
    长寿调节途径-多种生物
    Longevity regulating pathway-multiple species
    0.0817307695.20E-0517
    溶酶体
    Lysosome
    0.0633333330.0003097319
    军团菌病
    Legionellosis
    0.0773480660.00050908714
    胰岛素抵抗
    Insulin resistance
    0.0679611650.00160976314
    细胞凋亡
    Apoptosis
    0.0481927710.00395360220
    麻疹Measles0.0643274850.01156464311
    吞噬体
    Phagosome
    0.0447761190.01467521318
    弓形虫病
    Toxoplasmosis
    0.0578034680.03498883510
    下载: 导出CSV
  • [1]

    Dattilo A M, Bracchini L, Carlini L, et al. Estimate of the effects of ultraviolet radiation on the mortality of Artemia franciscana in naupliar and adult stages [J]. International Journal of Biometeorology, 2005, 49(6): 388-395. doi: 10.1007/s00484-005-0255-5

    [2]

    Liang P, MacRae T H. The synthesis of a small heat shock/alpha-crystallin protein in Artemia and its relationship to stress tolerance during development [J]. Developmental Biology, 1999, 207(2): 445-456. doi: 10.1006/dbio.1998.9138

    [3]

    Chen S, Chen D F, Yang F, et al. Characterization and processing of superoxide dismutase-fused vitellogenin in the diapause embryo formation: a special developmental pathway in the brine shrimp, Artemia parthenogenetica [J]. Biology of Reproduction, 2011, 85(1): 31-41. doi: 10.1095/biolreprod.110.090340

    [4]

    Yang F, Jia S N, Yu Y Q, et al. Deubiquitinating enzyme BAP1 is involved in the formation and maintenance of the diapause embryos of Artemia [J]. Cell Stress and Chaperones, 2012, 17(5): 577-587. doi: 10.1007/s12192-012-0333-7

    [5]

    Qiu Z, MacRae T H. Developmentally regulated synthesis of p8, a stress-associated transcription cofactor, in diapause-destined embryos of Artemia franciscana [J]. Cell Stress & Chaperones, 2007, 12(3): 255-264.

    [6]

    Zhu X J, Feng C Z, Dai Z M, et al. AMPK alpha subunit gene characterization in Artemia and expression during development and in response to stress [J]. Stress, 2007, 10(1): 53-63. doi: 10.1080/10253890601130773

    [7]

    Zhou R, Yang F, Chen D F, et al. Acetylation of chromatin-associated histone H3 lysine 56 inhibits the development of encysted Artemia embryos [J]. PLoS One, 2013, 8(6): e68374. doi: 10.1371/journal.pone.0068374

    [8]

    Maher C A, Kumar-Sinha C, Cao X, et al. Transcriptome sequencing to detect gene fusions in cancer [J]. Nature, 2009, 458(7234): 97-101. doi: 10.1038/nature07638

    [9]

    De Vos S, van Stappen G, Sorgeloos P, et al. Identification of salt stress response genes using the Artemia transcriptome [J]. Aquaculture, 2019(500): 305-314. doi: 10.1016/j.aquaculture.2018.09.067

    [10]

    Valenzuela-Miranda D, Gallardo-Escárate C, Valenzuela-Muñoz V, et al. Sex-dependent transcriptome analysis and single nucleotide polymorphism (SNP) discovery in the brine shrimp Artemia franciscana [J]. Marine Genomics, 2014(18): 151-154. doi: 10.1016/j.margen.2014.10.007

    [11] 王智超. 光周期、盐度、温度对孤雌卤虫的滞育诱导效应研究 [D]. 青岛: 中国海洋大学, 2015.

    Wang Z C. The diapause induction of parthenogenetic Artemia-studies on combined effects of environmental factors, sensitive stages, and expression of related proteins [D]. Qingdao: Ocean University of China, 2015.

    [12] 曹继敏, 李双财, 何德. 镉胁迫后旱柳转录组变化分析 [J]. 生物工程学报, 2020, 36(7): 1365-1377. doi: 10.13345/j.cjb.190486

    Cao J M, Li S C, He D. Transcriptome analysis of Salix matsudana under cadmium stress [J]. Chinese Journal of Biotechnology, 2020, 36(7): 1365-1377. doi: 10.13345/j.cjb.190486

    [13]

    Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. Nature Biotechnology, 2011, 29(7): 644-652. doi: 10.1038/nbt.1883

    [14] 刘慧芬, 卢良盛, 王静, 等. 基于转录组测序技术筛选花䱻卵巢发育相关基因 [J]. 水产学报, 2019, 43(8): 1714-1722.

    Liu H F, Lu L S, Wang J, et al. Transcriptome analysis of spotted steed (Hemibarbus maculatus Bleeker) to identify genes related to ovary development [J]. Journal of Fisheries of China, 2019, 43(8): 1714-1722.

    [15] 江红霞, 刘慧芬, 马晓, 等. 转录组测序筛选克氏原螯虾卵巢发育、免疫和生长相关基因 [J]. 水产学报, 2021, 45(3): 396-414.

    Jiang H X, Liu H F, Ma X, et al. Transcriptome analysis of Procambarus clarkii oscreen genes related to ovary development, immunity and growth [J]. Journal of Fisheries of China, 2021, 45(3): 396-414.

    [16]

    Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CT method [J]. Nature Protocols, 2008, 3(6): 1101-1108. doi: 10.1038/nprot.2008.73

    [17]

    Jiang H, Li X, Sun Y, et al. Insights into sexual precocity of female oriental river prawn Macrobrachium nipponense through transcriptome analysis [J]. PLoS One, 2016, 11(6): e0157173. doi: 10.1371/journal.pone.0157173

    [18]

    Oliphant A, Alexander J L, Swain M T, et al. Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas [J]. BMC Genomics, 2018, 19(1): 711. doi: 10.1186/s12864-018-5057-3

    [19] 董丽君, 孟宪红, 孔杰, 等. 基于转录组分析筛选凡纳滨对虾低温胁迫下的差异表达基因 [J]. 中国水产科学, 2019, 26(1): 161-171. doi: 10.3724/SP.J.1118.2019.18061

    Dong L J, Meng X H, Kong J, et al. Screening of differentially expressed genes related to the cold tolerance in Litopenaeus vannamei based on high-throughput transcriptome sequencing [J]. Journal of Fishery Sciences of China, 2019, 26(1): 161-171. doi: 10.3724/SP.J.1118.2019.18061

    [20]

    Muhd-Farouk H, Jasmani S, Ikhwanuddin M. Effect of vertebrate steroid hormones on the ovarian maturation stages of orange mud crab, Scylla olivacea (Herbst, 1796) [J]. Aquaculture, 2016(451): 78-86. doi: 10.1016/j.aquaculture.2015.08.038

    [21]

    Tomy S, Saikrithi P, James N, et al. Serotonin induced changes in the expression of ovarian gene network in the Indian white shrimp, Penaeus indicus [J]. Aquaculture, 2016(452): 239-246. doi: 10.1016/j.aquaculture.2015.11.003

    [22] 吴维福, 陈娈娈, 李郁娇, 等. 三丁基锡对罗氏沼虾血清中免疫酶活力的影响 [J]. 广东海洋大学学报, 2014, 34(3): 17-21. doi: 10.3969/j.issn.1673-9159.2014.03.004

    Wu W F, Chen L L, Li Y J, et al. Effects of tributyltin on the activities of immunologic enzyme in blood serum of the Macrobrachium rosenbergill [J]. Journal of Guangdong Ocean University, 2014, 34(3): 17-21. doi: 10.3969/j.issn.1673-9159.2014.03.004

    [23]

    Qiao H, Xiong Y, Zhang W, et al. Characterization, expression, and function analysis of gonad-inhibiting hormone in Oriental River prawn, Macrobrachium nipponense and its induced expression by temperature [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015(185): 1-8.

    [24]

    Warrier S, Subramoniam T. Receptor mediated yolk protein uptake in the crab Scylla serrata: crustacean vitellogenin receptor recognizes related mammalian serum lipoproteins [J]. Molecular Reproduction and Development, 2002, 61(4): 536-548. doi: 10.1002/mrd.10106

    [25]

    Chambard J C, Lefloch R, Pouysségur J, et al. ERK implication in cell cycle regulation [J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2007, 1773(8): 1299-1310. doi: 10.1016/j.bbamcr.2006.11.010

    [26]

    Halm S, Ibañez A J, Tyler C R, et al. Molecular characterisation of growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) and their patterns of gene expression during the ovarian reproductive cycle in the European sea bass [J]. Molecular and Cellular Endocrinology, 2008, 291(1/2): 95-103.

    [27]

    Patnaik S, Mohanty M, Bit A, et al. Molecular characterization of Activin Receptor Type IIA and its expression during gonadal maturation and growth stages in rohu carp [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2017(203): 1-10. doi: 10.1016/j.cbpb.2016.08.005

    [28]

    Wang Z P, Mu X Y, Guo M, et al. Transforming growth factor-β signaling participates in the maintenance of the primordial follicle pool in the mouse ovary [J]. Journal of Biological Chemistry, 2014, 289(12): 8299-8311. doi: 10.1074/jbc.M113.532952

    [29] 吴晓雅, 龚先宇, 谭树亮, 等. 低温诱导海蜇螅状体横裂生殖的分子信号调控机制初探 [J]. 海洋环境科学, 2021, 40(1): 66-72. doi: 10.12111/j.mes.20190262

    Wu X Y, Gong X Y, Tan S L, et al. Preliminary study on the molecular signaling regulation mechanism in Rhopilema esculentum polyps strobilation induced by low temperature [J]. Marine Environmental Science, 2021, 40(1): 66-72. doi: 10.12111/j.mes.20190262

    [30]

    Everaert C, Luypaert M, Maag J L V, et al. Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data [J]. Scientific Reports, 2017(7): 1559. doi: 10.1038/s41598-017-01617-3

    [31]

    Clegg J S, Willsie J K, Jackson S A. Adaptive significance of a small heat shock/α-crystallin protein (p26) in encysted embryos of the brine shrimp, Artemia franciscana [J]. American Zoologist, 2015, 39(6): 836-847.

    [32]

    Dai L, Chen D F, Liu Y L, et al. Extracellular matrix peptides of Artemia cyst shell participate in protecting encysted embryos from extreme environments [J]. PLoS One, 2011, 6(6): e20187. doi: 10.1371/journal.pone.0020187

    [33]

    Yang F, Chen S, Dai Z M, et al. Regulation of trehalase expression inhibits apoptosis in diapause cysts of Artemia [J]. The Biochemical Journal, 2013, 456(2): 185-194. doi: 10.1042/BJ20131020

    [34]

    Strange K, Denton J, Nehrke K. Ste20-type kinases: evolutionarily conserved regulators of ion transport and cell volume [J]. Physiology (Bethesda), 2006(21): 61-68.

    [35]

    Jo E, Lee S J, Choi E, et al. Sex-biased gene expression and isoform profile of brine shrimp Artemia franciscana by Transcriptome Analysis [J]. Animals (Basel), 2021, 11(9): 2630.

    [36]

    Zhou R, Sun Y X, Yang W J, et al. Identification and characterization of a Ste20-like kinase in Artemia and its role in the developmental regulation and resistance to environmental stress [J]. PLoS One, 2014, 9(3): e92234. doi: 10.1371/journal.pone.0092234

    [37]

    Song C, Cui Z, Hui M, et al. Molecular characterization and expression profile of three Fem-1 genes in Eriocheir sinensis provide a new insight into crab sex-determining mechanism [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2015(189): 6-14. doi: 10.1016/j.cbpb.2015.07.003

    [38]

    Shui Y, Liu G F, Xu Z H, et al. Exploring potential proteins associated with cyclin B 3′UTR in Procambarus clarkii oocytes [J]. Biochemical and Biophysical Research Communications, 2019, 517(3): 458-462. doi: 10.1016/j.bbrc.2019.07.104

    [39]

    Nakeim J, Kornthong N, Saetan J, et al. Presence of serotonin and its receptor in the central nervous system and ovary and molecular cloning of the novel crab serotonin receptor of the blue swimming crab, Portunus pelagicus [J]. Acta Histochemica, 2020, 122(1): 151457. doi: 10.1016/j.acthis.2019.151457

    [40]

    Draper B W, McCallum C M, Moens C B. nanos1 is required to maintain oocyte production in adult zebrafish [J]. Developmental Biology, 2007, 305(2): 589-598. doi: 10.1016/j.ydbio.2007.03.007

    [41] 张琴琴, 周莉, 李志, 等. 多倍体银鲫nanos2等位多态性、共线性和表达模式分析 [J]. 水生生物学报, 2020, 44(5): 1087-1096. doi: 10.7541/2020.126

    Zhang Q Q, Zhou L, Li Z, et al. Allelic diversification, syntenic alignment and expression patterns of nanos2 in polyploid gibel carp [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 1087-1096. doi: 10.7541/2020.126

图(6)  /  表(3)
计量
  • 文章访问数:  1129
  • HTML全文浏览量:  396
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2022-08-01
  • 网络出版日期:  2022-10-11
  • 发布日期:  2023-02-14

目录

    /

    返回文章
    返回