黄颡鱼FTR67基因的克隆及功能研究

郭文浩, 丹成, 梅洁, 张义兵

郭文浩, 丹成, 梅洁, 张义兵. 黄颡鱼FTR67基因的克隆及功能研究[J]. 水生生物学报, 2023, 47(5): 747-755. DOI: 10.7541/2023.2022.0109
引用本文: 郭文浩, 丹成, 梅洁, 张义兵. 黄颡鱼FTR67基因的克隆及功能研究[J]. 水生生物学报, 2023, 47(5): 747-755. DOI: 10.7541/2023.2022.0109
GUO Wen-Hao, DAN Cheng, MEI Jie, ZHANG Yi-Bing. MOLECULAR CLONING AND FUNCTION ANALYSIS OF TACHYSURUS FULVIDRACO FTR67[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(5): 747-755. DOI: 10.7541/2023.2022.0109
Citation: GUO Wen-Hao, DAN Cheng, MEI Jie, ZHANG Yi-Bing. MOLECULAR CLONING AND FUNCTION ANALYSIS OF TACHYSURUS FULVIDRACO FTR67[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(5): 747-755. DOI: 10.7541/2023.2022.0109

黄颡鱼FTR67基因的克隆及功能研究

基金项目: 国家重点研发计划(2018YFD0900302); 国家自然科学基金(31972826和32102838)资助
详细信息
    作者简介:

    郭文浩(1998—), 男, 硕士; 研究方向为鱼类免疫学。E-mail: 862699825@qq.com

    通信作者:

    张义兵(1969—), 博士, 研究员; E-mail: ybzhang@ihb.ac.cn

  • 中图分类号: Q344+.1

MOLECULAR CLONING AND FUNCTION ANALYSIS OF TACHYSURUS FULVIDRACO FTR67

Funds: Supported by the National Key R & D Program of China (2018YFD0900302); the National Natural Science Foundation of China (31972826 and 32102838)
    Corresponding author:
  • 摘要: 鱼类TRIM(Tripartite motif)家族的特异性扩张产生了一个硬骨鱼类特有的亚家族finTRIM (Fish novel TRIM, FTR), 为探究finTRIM在黄颡鱼(Tachysurus fulvidraco)先天抗病毒免疫中发挥的作用, 文章鉴定了1个与斑马鱼(Danio rerio) FTR67同源性较高的黄颡鱼finTRIM基因, 命名为TfFTR67 (Tachysurus fulvidraco FTR67)。系统进化树分析表明, FTR67在有些鱼类物种中发生了基因重复, 导致基因拷贝增多。TfFTR67不受SVCV的诱导表达, 是一个组成型表达的基因。过量表达TfFTR67抑制poly(I﹕C)及RLR信号分子诱导的干扰素反应, 同时促进病毒在细胞中的复制。鉴于TfFTR67与斑马鱼FTR67的表达特征和功能不同, 研究结果表明, 鱼类FTR67在不同物种中发生了基因重复和功能歧化。
    Abstract: TRIM (Tripartite motif) proteins play direct antiviral and indirect regulatory roles in vertebrate innate antiviral responses. The independent expansion of fish TRIM family gives rise to a subfamily unique to teleosts, named finTRIM (fish novel TRIM, FTR). In the current study, we identified a yellow catfish finTRIM gene, which is most homologous to zebrafish (Danio rerio) FTR67, thus named TfFTR67 (Tachysurus fulvidraco FTR67). Phylogenetic tree analysis showed that FTR67 has undergone gene duplication in some fish species, resulting in increased gene copies. RT-PCR showed that TfFTR67 is virally inducible and thus is a constitutively expressed gene. Overexpression of TfFTR67 inhibited the interferon response induced by poly(I﹕C) transfection and overexpression of RLR signaling molecules, and also promoted virus replication in fish cells. A previous report has shown that zebrafishFTR67 is induced by virus infection, and overexpression of zebrafish FTR67 enhances fish interferon response. Therefore, yellow catfish FTR67 displays the expression characteristics and function features that are different from those of zebrafish FTR67. In addition, three copies of FTR67 are found in goldfish genome, indicating that there is independent expansion of FTR67 gene in certain fish species. Actually, we do not know whether there is only one copy of FTR67 gene in yellow catfish genome although a single one is found up to now. These data together suggest that fish FTR67 has undergone gene duplication and functional diversification after radiation of fish species.
  • 图  1   FTR67的氨基酸序列及蛋白结构域组成分析

    A. 黄颡鱼、斑马鱼、苏氏圆腹𩷶、草鱼FTR67与鲫FTRCA1和斑马鱼FTR42蛋白的多重序列比对; 结构域用黑框表示; (*)和(.和:)分别表示氨基酸的一致性和相似性; B. 黄颡鱼、斑马鱼、苏氏圆腹𩷶、草鱼FTR67与鲫FTRCA1、斑马鱼FTR42的蛋白结构域组成

    Figure  1.   Multiple alignments and domain arrangements of FTR67s

    A. Multiple alignments of several fish FTR67 proteins and crucian carp-specific FTRCA1 and zebrafish FTR42. The domains of protein are indicated by boxes. The identical (*) and similar (. and :) amino acids are indicated; B. Schematic representation of FTR67 from yellow catfish, striped catfish, zebrafish and goldfish, crucian carp FTRCA1 and zebrafish FTR42 proteins

    图  2   黄颡鱼FTR67的系统进化树分析

    利用MEGA X软件进行多重序列比对, 在此基础上运用邻近法构建系统进化树

    Figure  2.   The evolutionary relationship of yellow catfish FTR67 with other finTRIM proteins

    A neighbor-joining tree is constructed based on analysis of protein sequences using MEGA X program

    图  3   黄颡鱼、苏氏圆腹?、斑马鱼和金鱼FTR67基因座位的共线性分析

    通过BLAST分析并结合进化树分析, 三个粗体TRIM25L为金鱼FTR67同源基因, 黑框中的TRIM16LTRIM25L实际上是FTR87的同源基因, GMRF35LPIGRL的同源基因

    Figure  3.   Syntenic analyses of FTR67 gene loci from yellow catfish, striped catfish, zebrafish and goldfish

    BLAST searches combined with phylogenetic tree analyses show that three goldfish TRIM25Ls in bolds are the orthologs of FTR67, the TRIM25L and TRIM16L in boxes are the orthologs of FTR87, and GMRF35L is the ortholog of PIGRL

    图  4   TfFTR67在黄颡鱼组织中的表达

    A. RT-PCR分析TfFTR67IFNMx1基因在SVCV病毒攻毒前后的黄颡鱼12种组织中的转录表达; B. TfFTR67基因的5′侧翼序列; 粗体表示NF-κB结合位点, 斜体表示SP1结合位点, 黑框表示起始密码子, 下划线表示TfFTR67基因的5′非翻译区; C. TfFTR67基因启动子中转录因子结合位点组成; 数字表示相对于TfFTR67基因的转录起始位点的碱基对位置

    Figure  4.   Expression analysis of TfFTR67 in yellow catfish tissues injected with or without SVCV

    A. RT-qPCR analysis of TfFTR67, IFN and Mx1 transcription in 12 tissues of yellow catfish infected with and without SVCV; B. 5′ flanked sequence of TfFTR67 gene showing the predicated sites specific to different transcription factors, including NF-κB and SP1. The transcription start site is indicated by box; C. Schematic of TfFTR67 promoters showing the location of transcription factor binding sites. Numbers indicate the positions of base pairs relative to the transcription start site of TfFTR67

    图  5   过量表达TfFTR67抑制干扰素反应

    A. 黄颡鱼IFN基因的5′侧翼序列; 黑框表示预测的ISRE基序, 下划线序列用于克隆TfIFN启动子序列构建TfIFNpro-luc质粒的引物, 黑框粗体字表起始密码子; B. TfIFNpro-luc表达质粒示意图; 数字表示相对于转录起始位点碱基对的位置; C. 转染poly(I﹕C)及过量表达RLR信号分子激活黄颡鱼IFN启动子的活性; D和E. 过量表达TfFTR67抑制胞内poly(I﹕C)诱导的TfIFNpro-luc的激活(D)及DrIFNφ1pro-luc的激活(E); F. 过量表达TfFTR67抑制RLR信号分子对DrIFNφ1pro-luc的激活

    Figure  5.   Overexpression of TfFTR67 negatively regulates IFN response

    A. 5′ flanked sequences of yellow catfish IFN gene. The putative ISRE motifs are indicated in box, and the underlined highlights the primer for cloning TfIFN promoter DNA to construct TfIFN-pro-luc. The transcription start site is indicated by box and in bold; B. Schematic of TfIFNpro-luc. Numbers indicate the positions of base pairs relative to the transcription start site of TfIFN; C. Yellow catfish IFN promoter is activated by poly (I﹕C) transfection and overexpression of each of RLR signaling molecules; D and E. Overexpression of TfFTR67 inhibit the poly (I﹕C)-triggered activation of TfFTR67pro-luc (D) and DrIFNφ1pro-luc (E); F. Overexpression of TfFTR67 inhibit the activation of DrIFNφ1pro-luc by RLR signaling molecules

    图  6   过量表达TfFTR67促进病毒复制

    在EPC细胞中过量表达TfFTR67, 12h后感染SVCV(5×103 TCID50/mL)。继续培养72h后, 通过结晶紫染色观察细胞CPE(A), 检测细胞上清液中的病毒滴度(B), RT-PCR检测细胞中IFNMx1基因的转录(C)

    Figure  6.   Overexpression of TfFRT67 promotes viral replication

    EPC cells transfected with TfFTR67 are infected with SVCV (5×103TCID50/mL), followed by crystal violet staining observation (A), viral title detection of supernatants (B), and RT-PC detection of IFN and Mx1 transcripts (C)

    表  1   实验所用引物

    Table  1   Primers used in this experiment

    引物名称
    Primer
    序列
    Sequence (5′—3′)
    TfFTR67-F CAGCCTGTCACATCGAGAC
    TfFTR67-R CCAAAGCTGAGAGATGCCTTAG
    TfFTR67-F-hm GCCACTGTGCTGGATgccaccATGGCGCAGGCGGGG
    TfFTR67-R-hm TGGAATTCTGCAGATCTACCGCCGTCTTCTCCG
    TfIFNpro-F-hm GAGCTCTTACGCGTGgccaccGTCGGGTGATGTTCACA
    TfIFNpro-R-hm CTCGAGCCCGGGCTAGCATGTTCTCGCTCTCTGCTCG
    TfFTR67-RT-F CCTTCCTGCAGAGCTACCGG
    TfFTR67-RT-R GTATTTGACTCCGCATCAGCC
    TfIFN-RT-F GATCGATAAGGCCAACACAG
    TfIFN-RT-R CAGTGTCCTGCTGTCCCA
    TfMx1-RT-F GCGCGAGTCTAAGTGAACAG
    TfMx1-RT-R AGCTCGAGTGGACATCTTGT
    Tfactin-RT-F GTCCGTGACATCAAGGAGAAGC
    Tfactin-RT-R AGGAGGAAGAGGCAGCAGTG
    EPCIFN-RT-F ATGAAAACTCAAATGTGGACGTA
    EPCIFN-RT-R GATAGTTTCCACCCATTTCCT
    EPCMx1-RT-F GGCTGGAGCAGGTGTTGGTATC
    EPCMx1-RT-R TCCACCAGGTCCGGCTTTGT
    EPCactin-RT-F CAGATCATGTTTGAGACC
    EPCactin-RT-R ATTGCCAATGGTGATGAC
    下载: 导出CSV
  • [1]

    Reddy B A, Etkin L D, Freemont P S. A novel zinc finger coiled-coil domain in a family of nuclear proteins [J]. Trends in Biochemical Sciences, 1992, 17(9): 344-345. doi: 10.1016/0968-0004(92)90308-V

    [2]

    Reymond A, Meroni G, Fantozzi A, et al. The tripartite motif family identifies cell compartments [J]. Embo Journal, 2001, 20(9): 2140-2151. doi: 10.1093/emboj/20.9.2140

    [3]

    van der Aa L M, Levraud J P, Yahmi M, et al. A large new subset of TRIM genes highly diversified by duplication and positive selection in teleost fish [J]. BMC Biology, 2009(7): 7.

    [4]

    Boudinot P, van der Aa L M, Jouneau L, et al. Origin and evolution of TRIM proteins: new insights from the complete TRIM repertoire of zebrafish and pufferfish [J]. PLoS One, 2011, 6(7): e22022. doi: 10.1371/journal.pone.0022022

    [5]

    Langevin C, Levraud J P, Boudinot P. Fish antiviral tripartite motif (TRIM) proteins [J]. Fish & Shellfish Immunology, 2019(86): 724-733.

    [6]

    Rajsbaum R, Garcia-Sastre A, Versteeg G A. TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity [J]. Journal of Molecular Biology, 2014, 426(6): 1265-1284. doi: 10.1016/j.jmb.2013.12.005

    [7]

    Versteeg G A, Rajsbaum R, Sanchez-Aparicio M T, et al. The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors [J]. Immunity, 2013, 38(2): 384-398. doi: 10.1016/j.immuni.2012.11.013

    [8]

    Zhao X, Gong X Y, Li Y L, et al. Characterization of DNA binding and nuclear retention identifies zebrafish IRF11 as a positive regulator of IFN antiviral response [J]. Journal of Immunology, 2020, 205(1): 237-250. doi: 10.4049/jimmunol.2000245

    [9] 李依琳, 张义兵. 鱼类和哺乳类RLR介导的抗病毒免疫反应的泛素化修饰调控 [J]. 水生生物学报, 2020, 44(5): 976-988. doi: 10.7541/2020.113

    Li Y L, Zhang Y B. Ubiquitination-mediated regulation of RLR-triggered antivral signaling in fish and mammals [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 976-988. doi: 10.7541/2020.113

    [10]

    Chen B, Huo S, Liu W, et al. Fish-specific finTRIM FTR36 triggers IFN pathway and mediates inhibition of viral replication [J]. Fish & Shellfish Immunology, 2019(84): 876-884.

    [11]

    Huo S, Jiao H, Chen B, et al. FTR67, a member of the fish-specific finTRIM family, triggers IFN pathway and against spring viremia of carp virus [J]. Fish & Shellfish Immunology, 2020(103): 1-8.

    [12]

    Langevin C, Aleksejeva E, Houel A, et al. FTR83, a member of the large fish-specific finTRIM family, triggers IFN pathway and counters viral infection [J]. Frontiers in Immunology, 2017(8): 617.

    [13]

    Wu M, Zhao X, Gong X Y, et al. FTRCA1, a species-specific member of finTRIM family, negatively regulates fish IFN response through autophage-lysosomal degradation of TBK1 [J]. Journal of Immunology, 2019, 202(8): 2407-2420. doi: 10.4049/jimmunol.1801645

    [14]

    Wu M, Dan C, Gui J F, et al. Fish species-specific TRIM gene FTRCA1 negatively regulates interferon response through attenuating IRF7 transcription [J]. Fish & Shellfish Immunology, 2019(90): 180-187.

    [15]

    Li Y L, Zhao X, Gong X Y, et al. Molecular identification and function characterization of four finTRIM genes from the immortal fish cell line, EPC [J]. Developmental & Comparative Immunology, 2020(113): 103775.

    [16] 刘汉勤, 崔书勤, 侯昌春, 等. 从XY雌鱼雌核发育产生YY超雄黄颡鱼 [J]. 水生生物学报, 2007, 31(5): 718-725. doi: 10.3321/j.issn:1000-3207.2007.05.018

    Liu H Q, Cui S Q, Hou C C, et al. YY supermale generated gynogenetically from XY female. in Pelteobagrus fulvidraco [J]. Acta Hydrobiologica Sinica, 2007, 31(5): 718-725. doi: 10.3321/j.issn:1000-3207.2007.05.018

    [17] 熊阳, 王帅, 丹成, 等. 抗菌肽HBβ-C在全雄和杂交黄颡鱼对多子小瓜虫抗性差异中的作用 [J]. 水生生物学报, 2021, 45(5): 975-985. doi: 10.7541/2021.2020.193

    Xiong Y, Wang S, Dan C, et al. The role of antimicrobial peptide HBβ-C in Ichthyophthirius multifiliis resistance in all-male and hybrid yellow catfish [J]. Acta Hydrobiologica Sinica, 2021, 45(5): 975-985. doi: 10.7541/2021.2020.193

    [18]

    Zhang X, Shen W, Xu C, et al. Discovery of a novel Piscanivirus in yellow catfish (Pelteobagrus fulvidraco) in China [J]. Infection Genetics and Evolution, 2019(74): 103924.

    [19]

    Gong G, Dan C, Xiao S, et al. Chromosomal-level assembly of yellow catfish genome using third-generation DNA sequencing and Hi-C analysis [J]. GigaScience, 2018, 7(11): giy120.

    [20]

    Li Y L, Gong X Y, Qu Z L, et al. A novel non-mammalian-specific HERC7 negatively regulates IFN response through degrading RLR signaling factors [J]. Journal of Immunology, 2022, 208(5): 1189-1203. doi: 10.4049/jimmunol.2100962

    [21]

    Sun F, Zhang Y B, Liu T K, et al. Characterization of fish IRF3 as an IFN-inducible protein reveals evolving regulation of IFN response in vertebrates [J]. Journal of Immunology, 2010, 185(12): 7573-7582. doi: 10.4049/jimmunol.1002401

    [22]

    Sun F, Zhang Y B, Liu T K, et al. Fish MITA serves as a mediator for distinct fish IFN gene activation dependent on IRF3 or IRF7 [J]. Journal of Immunology, 2011, 187(5): 2531-2539. doi: 10.4049/jimmunol.1100642

    [23] 赵祥, 张义兵. 鱼类IRF家族在干扰素抗病毒免疫反应中的调控功能 [J]. 水产学报, 2021, 45(9): 1592-1604.

    Zhao X, Zhang Y B. IRF-mediated regulation of IFN antiviral response in fish [J]. Journal of Fisheries of China, 2021, 45(9): 1592-1604.

    [24]

    Zhang Y B, Gui J F. Molecular regulation of interferon antiviral response in fish [J]. Developmental & Comparative Immunology, 2012, 38(2): 193-202.

  • 期刊类型引用(7)

    1. 许译元,应雪萍. 不同pH及Cd~(2+)浓度下文蛤肝胰腺的氧化应激效应. 温州大学学报(自然科学版). 2025(01): 54-64 . 百度学术
    2. 杨志刚,赵雪健,成永旭. 镉和低pH胁迫对中华绒螯蟹免疫应答及相关基因表达的影响. 上海海洋大学学报. 2022(02): 373-383 . 百度学术
    3. 赵芳芳,郎朗,张左兵,王兰. 镉胁迫对河南华溪蟹两种C型凝集素免疫应答的影响. 水生生物学报. 2019(02): 348-355 . 本站查看
    4. 许友卿,刘永强,李伟峰,丁兆坤. 镉对水生动物生物大分子的影响及机理. 饲料工业. 2019(20): 54-59 . 百度学术
    5. 郭慧琴,吴中强,毛秀丽,王欢,王兰,许鹏. 孕期母体镉暴露对C57BL/6小鼠肝脏和肾脏的组织特异性氧化损伤作用. 生物技术通讯. 2018(05): 613-618+666 . 百度学术
    6. 陈红苗,许鹏,井维鑫,王兰. 镉对河南华溪蟹副性腺组织的氧化性损伤作用. 环境科学学报. 2017(05): 1999-2005 . 百度学术
    7. 高天然,周可新. 镉胁迫下水生动物的生物标志物研究进展. 生态与农村环境学报. 2017(04): 297-307 . 百度学术

    其他类型引用(5)

图(6)  /  表(1)
计量
  • 文章访问数:  2071
  • HTML全文浏览量:  783
  • PDF下载量:  46
  • 被引次数: 12
出版历程
  • 收稿日期:  2022-03-24
  • 修回日期:  2022-04-14
  • 网络出版日期:  2023-04-11
  • 发布日期:  2023-05-14

目录

    /

    返回文章
    返回