混合渔业视角下舟山渔场几种渔具管理策略对经济物种产量及生物群落影响评估

赵函磊, 王洋, 张畅, 王迎宾

赵函磊, 王洋, 张畅, 王迎宾. 混合渔业视角下舟山渔场几种渔具管理策略对经济物种产量及生物群落影响评估[J]. 水生生物学报, 2025, 49(4): 042514. DOI: 10.7541/2025.2024.0351
引用本文: 赵函磊, 王洋, 张畅, 王迎宾. 混合渔业视角下舟山渔场几种渔具管理策略对经济物种产量及生物群落影响评估[J]. 水生生物学报, 2025, 49(4): 042514. DOI: 10.7541/2025.2024.0351
ZHAO Han-Lei, WANG Yang, ZHANG Chang, WANG Ying-Bin. ASSESSMENT OF SEVERAL FISHING GEAR MANAGEMENT STRATEGIES ON ECONOMIC SPECIES YIELD AND BIOCOMMUNITY IN ZHOUSHAN FISHING GROUND FROM THE PERSPECTIVE OF MIXED FISHERIES[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042514. DOI: 10.7541/2025.2024.0351
Citation: ZHAO Han-Lei, WANG Yang, ZHANG Chang, WANG Ying-Bin. ASSESSMENT OF SEVERAL FISHING GEAR MANAGEMENT STRATEGIES ON ECONOMIC SPECIES YIELD AND BIOCOMMUNITY IN ZHOUSHAN FISHING GROUND FROM THE PERSPECTIVE OF MIXED FISHERIES[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042514. DOI: 10.7541/2025.2024.0351
赵函磊, 王洋, 张畅, 王迎宾. 混合渔业视角下舟山渔场几种渔具管理策略对经济物种产量及生物群落影响评估[J]. 水生生物学报, 2025, 49(4): 042514. CSTR: 32229.14.SSSWXB.2024.0351
引用本文: 赵函磊, 王洋, 张畅, 王迎宾. 混合渔业视角下舟山渔场几种渔具管理策略对经济物种产量及生物群落影响评估[J]. 水生生物学报, 2025, 49(4): 042514. CSTR: 32229.14.SSSWXB.2024.0351
ZHAO Han-Lei, WANG Yang, ZHANG Chang, WANG Ying-Bin. ASSESSMENT OF SEVERAL FISHING GEAR MANAGEMENT STRATEGIES ON ECONOMIC SPECIES YIELD AND BIOCOMMUNITY IN ZHOUSHAN FISHING GROUND FROM THE PERSPECTIVE OF MIXED FISHERIES[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042514. CSTR: 32229.14.SSSWXB.2024.0351
Citation: ZHAO Han-Lei, WANG Yang, ZHANG Chang, WANG Ying-Bin. ASSESSMENT OF SEVERAL FISHING GEAR MANAGEMENT STRATEGIES ON ECONOMIC SPECIES YIELD AND BIOCOMMUNITY IN ZHOUSHAN FISHING GROUND FROM THE PERSPECTIVE OF MIXED FISHERIES[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042514. CSTR: 32229.14.SSSWXB.2024.0351

混合渔业视角下舟山渔场几种渔具管理策略对经济物种产量及生物群落影响评估

基金项目: 舟山市科技局重点项目(2022C41003)资助
详细信息
    作者简介:

    赵函磊(1999—), 男, 硕士研究生; 主要从事海洋渔业生态可持续利用研究。E-mail: zhaohanlay@sina.com

    通信作者:

    王迎宾(1979—), 教授, 博士; 主要从事渔业资源评估与管理研究。E-mail: ybwang@zjou.edu.cn

  • 中图分类号: S937.3

ASSESSMENT OF SEVERAL FISHING GEAR MANAGEMENT STRATEGIES ON ECONOMIC SPECIES YIELD AND BIOCOMMUNITY IN ZHOUSHAN FISHING GROUND FROM THE PERSPECTIVE OF MIXED FISHERIES

Funds: Supported by the Key Project of Zhoushan Science and Technology Bureau (2022C41003)
    Corresponding author:
  • 摘要:

    为了探究混合渔业中不同捕捞渔具捕捞努力量变化对渔业活动经济效益及生态效益带来的潜在影响, 研究根据2022年在舟山渔场作业的4种渔船的渔捞日志数据, 构建舟山渔场质量谱模型(Size Spectrum Model, SSM), 评估了混合渔业中各作业方式捕捞变化对各物种产量、生物量和生物群落结构的影响。研究通过对13种渔具管理场景进行模拟, 分析不同场景下各物种产量的年际变化趋势, 并结合群落总生物量、大型鱼类指数、平均体重、平均最大体重和质量谱斜率5种群落生态指标监测群落对不同捕捞活动水平的响应。结果显示: (1)当拖网捕捞努力量下降时, 群落总生物量、平均体重及大型鱼类资源量明显上升, 银鲳(Pampus argenteus)、黑鮟鱇(Lophiomus setigerus)和大黄鱼(Larimichthys crocea)资源量有所回升, 黑鮟鱇和大黄鱼产量显著提高; (2)张网捕捞努力量下降会使群落总生物量有所上升, 海鳗(Muraenesox spp.)、棘头梅童(Collichthys lucidus)和带鱼(Trichiurus lepturus)资源量有所回升, 海鳗产量显著提高。相反, 当张网捕捞努力量上升时, 棘头梅童生物量资源及产量逐年下降; (3)当拖虾网捕捞努力量下降时, 总产量及群落总生物量有所下降, 管鞭虾(Solenocera spp.)和大黄鱼资源量有所回升。而当拖虾网捕捞努力量上升, 总产量及群落总生物量有所上升; (4)刺网捕捞努力量变化对于渔业产量、生物量及群落结构影响较小。研究结果对于保护舟山渔场各经济物种资源可持续利用及制定可行和更有效的渔业管理策略提供参考。

    Abstract:

    In order to explore the potential effects of different fishing gear and fishing efforts on the economic and ecological benefits of fishery activities in mixed fisheries, the Size Spectrum Model (SSM) was constructed based on the fishing log data from four types of vessels operating in the Zhoushan fishing ground in 2022. The study evaluated the effects of changes in fishing methods on the yield, biomass, and community structure of each species in the mixed fishery. Thirteen fishing gear management scenarios were simulated, and the interannual variation trends in species yield under different scenarios were analyzed. Additionally, community responses to different levels of fishing activity were monitored using five ecological indicators: total community biomass, large fish index, mean weight, mean maximum weight, and size spectrum slope. The results showed that: (1) When trawling effort decreased, the total biomass, average body weight, and large fish resources increased significantly, particularly for Pampus argenteus, Lophiomus setigerus, and Larimichthys crocea. The yield of Lophiomus setigerus and Larimichthys crocea also increased significantly. (2) The total biomass of the community increased with the decrease of stow net fishing effort, leading to the recovery of Muraenesox spp., Collichthys lucidus, and Trichiurus lepturus. The yield of Muraenesox spp. increased significantly. On the contrary, as net fishing effort increased, the biomass resources and yield of the plum child decreased year by year. (3) When the fishing effort of the shrimp net decreased, the total yield and total biomass of the community decreased, while the resources of Solenocera spp. and Larimichthys crocea increased. When the fishing effort of shrimp net increased, the total production and biomass of community increased. (4) The change in gillnet fishing effort had little effect on fishery yield, biomass, and community structure. The research results provide important insights for the sustainable use of economic species resources in the Zhoushan fishing ground, and they can help managers better understand the potential impact of changes in fishing effort of various fishing gear on fishery output and community ecology, so as to formulate feasible and more effective fishery management strategies according to the importance of species and the actual situation of fishing vessels.

  • 图  1   舟山渔场及捕捞作业渔区

    Figure  1.   Zhoushan fishing ground and fishing operation area

    图  2   质量谱模型平衡状态基本输出

    Figure  2.   Basic output of size spectrum model equilibrium state

    图  3   质量谱模型拟合效果图

    Figure  3.   Size spectrum model fitting effect diagram

    图  4   模拟场景下各生态指标变化情况

    Figure  4.   Changes of ecological indicators in simulated scenarios

    图  5   不同场景下各物种产量变化情况

    图A至图M分别对应表 2管理场景1至场景13, 黑色垂直虚线为管理策略实施年份

    Figure  5.   Yield changes of each species under different scenarios

    Fig. A to M correspond to management scenarios 1 to 13 in Tab. 2, respectively. The black vertical dashed lines indicate the implementation year of the management strategy

    图  6   不同场景下各物种生物量变化情况

    图A至图M分别对应表 2管理场景1至场景13; 黑色垂直虚线为管理策略实施年份

    Figure  6.   Biomass changes of each species under different scenarios

    Fig. A to M correspond to management scenarios 1 to 13 in Tab. 2, respectively; The black vertical dashed lines indicate the implementation year of the management strategy

    表  1   质量谱模型方程总结

    Table  1   Summary of equations in the multispecies size-spectrum model

    过程
    Process
    子过程(符号)
    Sub-process (symbol)
    方程
    Equation
    相遇及消耗
    Encounter and consumption
    摄食选择性Prey size selection ($ {\phi }_{} $) $ {\phi }_{i}\left(\dfrac{{w}_{p}}{w}\right)=\mathrm{e}\mathrm{x}\mathrm{p}\left[-{\left(\mathrm{l}\mathrm{n}\left(\dfrac{w}{{w}_{p}{\beta }_{i}}\right)\right)}^{2}/\left(2{\sigma }_{i}^{2}\right)\right] $ (1)
    食物相遇概率Encountered food (E) $ {E}_{i}\left(w\right)={V}_{i}\left(w\right)\sum _{i}{\theta }_{i}\int {N}_{i}\left(w\right)\varphi \left(\dfrac{{w}_{p}}{w}\right){w}_{p}\mathrm{d}{w}_{p} $ (2)
    体积搜索率Volumetric search rate (V) $ {V}_{i}\left(w\right)=\left[\dfrac{{f}_{0}h{\beta }^{2-\lambda }}{\left(1-{f}_{0}\right)\sqrt{2{\text{π}} }\kappa \sigma }\right]{w}^{q} $ (3)
    摄食水平 Feeding level (f) $ {f}_{i}\left(w\right)=\dfrac{{E}_{i}\left(w\right)}{{E}_{i}\left(w\right)+{I}_{\mathrm{m}\mathrm{a}\mathrm{x},i}\left(w\right)} $ (4)
    最大消耗速率Maximum consumption rate (I) $ {I}_{\mathrm{m}\mathrm{a}\mathrm{x},i}\left(w\right)=h{w}^{n} $ (5)
    生长及繁殖
    Growth and production
    生长Somatic growth ($ {g}_{i} $) $ {g}_{i}\left(w\right)=\left(\alpha {f}_{i}\left(w\right){I}_{\mathrm{m}\mathrm{a}\mathrm{x},i}\left(w\right)-{k}_{s}{w}^{p}\right)\left(1-{\psi }_{i}\left(w\right)\right) $ (6)
    繁殖能量Energy for reproduction ($ {g}_{r} $) $ {g}_{r}\left(w\right)=\left(\alpha f\left(w\right){I}_{\mathrm{m}\mathrm{a}\mathrm{x}}-{k}_{s}{w}^{p}\right)\psi \left(w\right) $ (7)
    成熟Maturation ($ {\psi }_{} $) $ {\psi }_{i}\left(w\right)={\left[1+{\left(\dfrac{w}{{w}_{\mathrm{m}\mathrm{a}\mathrm{t}}}\right)}^{-10}\right]}^{-1}{\left(\dfrac{w}{W}\right)}^{1-n} $ (8)
    补充量Recruitment ($ R $) $ {R}_{i}={R}_{\mathrm{m}\mathrm{a}\mathrm{x},i}\dfrac{{R}_{{\mathrm{ep}}}}{{R}_{{\mathrm{ep}}}+{R}_{\mathrm{m}\mathrm{a}\mathrm{x},i}} $ (9)
    产卵量Egg production ($ {R}_{{\mathrm{ep}}} $) $ {R}_{{\mathrm{ep}}}=\dfrac{\varepsilon}{2{w}_{0}}\int N\left(w\right){g}_{r}\left(w\right)\mathrm{d}w $ (10)
    死亡Mortality 被捕食死亡率Predation mortality ($ {\mu }_{{\mathrm{p}}} $) $ {\mu }_{p,\,i}\left(w\right)=\sum _{i}\int {\phi }_{i}\left(\dfrac{{w}_{{\mathrm{p}}}}{w}\right)\left(-{f}_{i}\left(w\right)\right){V}_{i}\left(w\right){\theta }_{i}{N}_{i}\left(w\right)\mathrm{d}w $ (11)
    捕捞死亡率Fishing mortality (F) $ {F}_{i}\left(w\right)={\mathrm{S}}{{\mathrm{S}}}_{i}\left(w\right){Q}_{i}E $ (12)
    背景死亡率Background mortality ($ {\mu }_{{\mathrm{b}}} $) $ {\mu }_{b,i}={Z}_{0}{w}^{n-1} $ (13)
    背景资源Background 背景承载力Carrying capacity (κ) $ {\textit{κ}} \left(w\right)={{\textit{κ}} }_{r}{w}^{-\lambda } $ (14)
    资源动态Resources dynamics $ \dfrac{\partial {N}_{r}\left(w\right)}{\partial t}={r}_{0}{w}^{n-1}\left[{\textit{κ}} \left(w\right)-{N}_{r}\left(w\right)\right]-{\mu }_{p,i}\left(w\right){N}_{r}\left(w\right) $ (15)
    注: 各式中i为物种; t为时间; w为重量, w0为后代重量; σ为选择宽度; SS为物种选择性大小; Q为捕捞能力; E为捕捞努力量; α为同化效率, 使用默认值0.6; f0为初始摄食水平; h为最大消耗常数, 使用默认值40 g1−n/year; ks为标准代谢系数, 使用默认值4 g1−p/year; ε为后代生产效率, 使用默认值1; n为最大消耗指数, 使用默认值2/3; q为体积搜索速率指数, 使用默认值0.8; p为标准代谢指数, 使用默认值0.75; Z0为背景死亡率的因子, 使用默认值0.6; λ为资源谱指数, 值为2−n+q; r0为资源谱生产力, 使用默认值4 g1−p/yearNote: i represent species; t represent time; w represent the weight, w0 represent the weight of the offspring; σ represent the selection width; SS represent the selective size of species; Q represent fishing capacity; E represent fishing effort; α represent assimilation efficiency, using the default value 0.6; f0 represent the initial feeding level; h indicates the maximum consumption constant, using the default value 40 g1−p/year; ks represent the coefficient of standard metabolic, and the default value represent 4 g1−p/year; ε represent the efficiency of offspring production, using the default value 1; n represent the exponent of maximum consumption, using the default value 2/3; q represent the volumetric search rate, using the default value of 0.8; p represent the exponent of standard metabolism, using the default value of 0.75; Z0 represent the factor for background mortality, using the default value of 0.6; λ represent the exponent of resource spectrum, the value represent 2−n+q; r0 represent the resource productivity, using the default value 4 g1−p/year
    下载: 导出CSV

    表  2   构建质量谱模型所选物种及参数

    Table  2   Species and parameters selected for constructing size-spectrum model

    物种Species Winf (g) Wmat (g) β Rmax SS (g) σ Kvb Q Gear Yieldobserved (g)
    海鳗Muraenesox spp. 13860.78 680.10 205 5.72×106 34.01 1.30 0.50 1 SN 1.60×109
    日本鲭Scomber japonicus 2900.00 263.56 45 2.25×109 13.18 1.30 0.30 1 TN 5.50×109
    Miichthys miiuy 2913.00 342.00 35 2.80×108 17.10 1.30 0.32 1 TN 8.50×108
    大黄鱼Larimichthys crocea 10659.05 101.33 95 1.08×107 5.07 1.30 0.43 1 TN 8.00×108
    小黄鱼Larimichthys polyactis 1081.15 36.75 310 4.61×109 1.84 1.30 0.44 1 GN 1.00×1010
    棘头梅童Collichthys lucidus 78.90 16.00 25 2.00×1011 0.80 1.30 0.42 1 SN 7.50×109
    带鱼Trichiurus lepturus 5000.00 326.27 20 8.76×108 16.31 1.30 0.42 1 SN 2.10×1010
    龙头鱼Harpadon nehereus 283.00 60.40 100 4.69×109 3.02 1.30 0.55 1 GN 2.00×109
    银鲳Pampus argenteus 6437.09 186.82 5000 8.90×108 9.34 1.30 0.25 1 TN 5.00×109
    黑鮟鱇Lophiomus setigerus 13496.00 260.00 260 1.93×107 13.00 1.30 0.35 1 TN 1.35×109
    舌鳎Cynoglossus spp. 231.00 27.00 30 3.32×109 1.35 1.30 0.57 1 TN 1.80×109
    管鞭虾Solenocera spp. 22.10 5.27 10 9.83×1010 0.26 1.30 1.00 1 SHN 1.80×1010
    三疣梭子蟹Portunus trituberculatus 639.29 159.82 10 4.79×108 7.99 1.30 1.62 1 SHN 1.25×1010
    短蛸Octopus ocellatus 252.00 63.00 55 1.13×108 3.15 1.30 1.44 1 TN 6.60×108
    副渔获物种Bycatch species 45.00 6.16 410 1.84×1011 0.31 1.30 0.60 1 TN 2.20×1010
    注: Gear中TN为单拖网; SN为张网; SHN为拖虾网; GN为刺网Note: TN in Gear represent single trawl; SN represent stow net; SHN represent shrimp net; GN represent gillnet
    下载: 导出CSV

    表  3   模拟场景及场景下不同渔具捕捞努力量变化

    Table  3   Scenarios and changes in fishing effort of different fishing gear under different scenarios

    模拟场景
    Scenarios
    场景效果
    Scenario effects
    场景下渔具捕捞
    努力量变化组合
    Change combination of
    fishing gear fishing effort under scenarios
    1 拖网捕捞努力量下降 拖网↓
    2 拖网捕捞努力量转移至张网 拖网↓张网↑
    3 拖网捕捞努力量转移至拖虾网 拖网↓拖虾网↑
    4 拖网捕捞努力量转移至刺网 拖网↓刺网↑
    5 张网捕捞努力量下降 张网↓
    6 张网捕捞努力量转移至拖虾网 张网↓拖虾网↑
    7 张网捕捞努力量转移至刺网 张网↓刺网↑
    8 拖虾网捕捞努力量下降 拖虾网↓
    9 拖虾网捕捞努力量转移至张网 拖虾网↓张网↑
    10 拖虾网捕捞努力量转移至刺网 拖虾网↓刺网↑
    11 刺网捕捞努力量下降 刺网↓
    12 刺网捕捞努力量转移至张网 刺网↓张网↑
    13 刺网捕捞努力量转移至拖虾网 刺网↓拖虾网↑
    注: 表中“↑”“↓”代表渔具捕捞努力量E在当前基础上十年间等差上升50% (1.5E)或等差下降50% (0.5E); “渔具A↓渔具B↑”指将减少渔具A捕捞努力量, 同时增加渔具B捕捞努力量, 即渔具A捕捞努力量转移至渔具BNote: “↑” and “↓” indicate the gear fishing effort E has increased by 50% (1.5E) or decreased by 50% (0.5E) in the past ten years from the current basis; “Fishing gear A↓ Fishing gear B↑” means the fishing effort of fishing gear A will be reduced while the fishing effort of fishing gear B will be increased, that is, the fishing effort of fishing gear A will be transferred to fishing gear B
    下载: 导出CSV

    表  4   不同场景下生态指标前后十年均值变化

    Table  4   Ten-year average changes of ecological indicators before and after different scenarios (%)

    场景
    Scenarios
    管理策略
    Management strategy
    总产量
    Total yield
    总生物量
    Biomass
    大型鱼类指数
    LFI
    平均体重
    MW
    最大平均体重
    MMW
    质量谱斜率
    SLOPE
    1 拖网↓ –11.65 +15.50 +8.58 +18.97 –0.27 +17.80
    2 拖网↓张网↑ –11.95 +12.59 +9.35 +23.49 +2.13 +18.68
    3 拖网↓拖虾网↑ –1.10 +19.54 +9.85 +26.58 +5.17 +19.98
    4 拖网↓刺网↑ –9.24 +15.21 +9.80 +19.33 +0.94 +19.04
    5 张网↓ –11.99 +12.93 +2.41 +1.41 –9.47 +14.05
    6 张网↓拖虾网↑ –2.95 +14.98 +1.41 +1.41 –7.60 +14.07
    7 张网↓刺网↑ –9.57 +12.33 +3.77 +1.56 –8.56 +14.89
    8 拖虾网↓ –20.87 –2.33 –0.72 –6.88 –9.64 –3.77
    9 拖虾网↓张网↑ –22.99 –8.84 –4.46 –12.33 –9.77 –14.36
    10 拖虾网↓刺网↑ –18.49 –2.82 +0.69 –6.82 –8.49 –2.66
    11 刺网↓ –6.90 +1.44 +1.37 +7.82 –0.18 +0.17
    12 刺网↓张网↑ –7.63 –4.37 +0.86 +9.59 +1.74 –7.67
    13 刺网↓拖虾网↑ +3.72 +4.21 +2.86 +15.79 +5.57 +2.71
    下载: 导出CSV
  • [1]

    Vinther M, Reeves S A, Patterson K R. From single-species advice to mixed-species management: taking the next step [J]. ICES Journal of Marine Science, 2004, 61(8): 1398-1409.

    [2]

    Sun M, Li Y, Suatoni L, et al. Status and management of mixed fisheries: a global synthesis [J]. Reviews in Fisheries Science & Aquaculture, 2023, 31(4): 458-482.

    [3]

    Kell L T, Crozier W W, Legault C M. Mixed and multi-stock fisheries [J]. ICES Journal of Marine Science, 2004, 61(8): 1330.

    [4]

    Thorpe R B, Dolder P J, Reeves S, et al. Assessing fishery and ecological consequences of alternate management options for multispecies fisheries [J]. ICES Journal of Marine Science, 2016, 73(6): 1503-1512.

    [5]

    Dolder P J, Thorson J T, Minto C. Spatial separation of catches in highly mixed fisheries [J]. Scientific Reports, 2018, 8(1): 13886. doi: 10.1038/s41598-018-31881-w

    [6]

    Martín P, Maynou F, Garriga-Panisello M, et al. Fishing effort alternatives for the management of demersal fisheries in the western Mediterranean [J]. Scientia Marina, 2019, 83(4): 293-304. doi: 10.3989/scimar.04937.29B

    [7]

    Ben-Hasan A, Walters C, Louton R, et al. Fishing-effort response dynamics in fisheries for short-lived invertebrates [J]. Ocean & Coastal Management, 2018(165): 33-38.

    [8]

    Ichinokawa M, Okamura H. Properly designed effort management for highly fluctuating small pelagic fish populations: a case study in a purse seine fishery targeting chub mackerel [J]. Marine Ecology Progress Series, 2019(617/618): 265-276.

    [9]

    Liu X, Heino M. Evaluating effort regulation in mixed fisheries: a Monte Carlo approach [J]. ICES Journal of Marine Science, 2019, 76(7): 2114-2124. doi: 10.1093/icesjms/fsz155

    [10]

    Jacobsen N S, Essington T E, Andersen K H. Comparing model predictions for ecosystem-based management [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73(4): 666-676. doi: 10.1139/cjfas-2014-0561

    [11]

    Giacomini H C, Shuter B J, Baum J K. Size-based approaches to aquatic ecosystems and fisheries science: a symposium in honour of Rob Peters [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73(4): 471-476. doi: 10.1139/cjfas-2016-0100

    [12]

    Hartvig M, Andersen K H, Beyer J E. Food web framework for size-structured populations [J]. Journal of Theoretical Biology, 2011, 272(1): 113-122. doi: 10.1016/j.jtbi.2010.12.006

    [13]

    Jacobsen N S, Gislason H, Andersen K H. The consequences of balanced harvesting of fish communities [J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1775): 20132701.

    [14]

    Andersen K H, Brander K, Ravn-Jonsen L. Trade-offs between objectives for ecosystem management of fisheries [J]. Ecological Applications, 2015, 25(5): 1390-1396. doi: 10.1890/14-1209.1

    [15]

    Zhang C, Chen Y, Ren Y. An evaluation of implementing long-term MSY in ecosystem-based fisheries management: Incorporating trophic interaction, bycatch and uncertainty [J]. Fisheries Research, 2016(174): 179-189. doi: 10.1016/j.fishres.2015.10.007

    [16]

    Blanchard J L, Andersen K H, Scott F, et al. Evaluating targets and trade-offs among fisheries and conservation objectives using a multispecies size spectrum model [J]. Journal of Applied Ecology, 2014, 51(3): 612-622. doi: 10.1111/1365-2664.12238

    [17]

    Lin Q, Zhang Y, Zhu J. Simulating the impacts of fishing on central and eastern tropical Pacific ecosystem using multispecies size-spectrum model [J]. Acta Oceanologica Sinica, 2022, 41(3): 34-43.

    [18]

    Zhang C, Chen Y, Thompson K, et al. Implementing a multispecies size-spectrum model in a data-poor ecosystem [J]. Acta Oceanologica Sinica, 2016(35): 63-73.

    [19]

    Wo J, Zhang C, Ji Y, et al. A multispecies TAC approach to achieving long-term sustainability in multispecies mixed fisheries [J]. ICES Journal of Marine Science, 2022, 79(1): 218-229. doi: 10.1093/icesjms/fsab257

    [20]

    de Juan S, Delius G, Maynou F. A model of size-spectrum dynamics to estimate the effects of improving fisheries selectivity and reducing discards in Mediterranean mixed demersal fisheries [J]. Fisheries Research, 2023(266): 106764. doi: 10.1016/j.fishres.2023.106764

    [21] 夏一璐, 陈琼, 赵荣磊, 等. 伏休前后舟山渔场单拖船低值杂鱼渔获物组成比较分析 [J]. 浙江海洋学院学报(自然科学版), 2015, 34(6): 520-525.]

    Xia Y L, Chen Q, Zhao R L, et al. Comparative analysis of species composition of low value/trash fish caught by single otter trawl in Zhoushan fishing ground before and after the closed fishing aeason [J]. Journal of Zhejiang Ocean University (Natural Science), 2015, 34(6): 520-525. [

    [22] 朱梦华, 钱卫国. 舟山渔场渔业资源衰退原因及修复对策 [J]. 农村经济与科技, 2022, 33(9): 79-82.] doi: 10.3969/j.issn.1007-7103.2022.09.023

    Zhu M H, Qian W G. Reasons for decline of fishery resources in Zhoushan fishing ground and countermeasures for restoration [J]. Rural Economy and Science-Technology, 2022, 33(9): 79-82. [ doi: 10.3969/j.issn.1007-7103.2022.09.023

    [23]

    Fulton E, Smith A, Punt A. Which ecological indicators can robustly detect effects of fishing [J]? ICES Journal of Marine Science, 2005, 62(3): 540-551.

    [24]

    Greenstreet S P R, Rogers S I, Rice J C, et al. Development of the EcoQO for the North Sea fish community [J]. ICES Journal of Marine Science, 2011, 68(1): 1-11. doi: 10.1093/icesjms/fsq156

    [25]

    Rochet M J, Rice J C. Do explicit criteria help in selecting indicators for ecosystem-based fisheries management [J]? ICES Journal of Marine Science, 2005, 62(3): 528-539. doi: 10.1016/j.icesjms.2005.01.007

    [26]

    Shin Y J, Cury P. Using an individual-based model of fish assemblages to study the response of size spectra to changes in fishing [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61(3): 414-431. doi: 10.1139/f03-154

    [27]

    Petchey O L, Belgrano A. Body-size distributions and size-spectra: universal indicators of ecological status [J]? Biology Letters, 2010, 6(4): 434-437.

    [28] 乔家乐, 栗小东, 李建龙, 等. 基于质量谱模型评估捕捞对蜈支洲岛海洋牧场鱼类群落的影响 [J]. 海洋学报, 2024, 46(1): 64-76.]

    Qiao J L, Li X D, Li J L, et al. Assessing the impacts of fishing on fish community in marine ranch of the Wuzhizhou Island based on size-spectrum model [J]. Haiyang Xuebao, 2024, 46(1): 64-76. [

    [29]

    Andersen K H, Beyer J E. Asymptotic size determines species abundance in the marine size spectrum [J]. The American Naturalist, 2006, 168(1): 54-61. doi: 10.1086/504849

    [30]

    Szuwalski C S, Burgess M G, Costello C, et al. High fishery catches through trophic cascades in China [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(4): 717-721.

    [31]

    Novaglio C, Blanchard J L, Plank M J, et al. Exploring trade-offs in mixed fisheries by integrating fleet dynamics into multispecies size-spectrum models [J]. Journal of Applied Ecology, 2022, 59(3): 715-728. doi: 10.1111/1365-2664.14086

    [32]

    Reum J C P, Blanchard J L, Holsman K K, et al. Ensemble projections of future climate change impacts on the eastern Bering sea food web using a multispecies size spectrum model [J]. Frontiers in Marine Science, 2020(7): 124.

    [33]

    Benoit D M, Chu C, Giacomini H C, et al. Size spectrum model reveals importance of considering species interactions in a freshwater fisheries management context [J]. Ecosphere, 2022, 13(7): e4163. doi: 10.1002/ecs2.4163

    [34]

    Andersen K H, Pedersen M. Damped trophic cascades driven by fishing in model marine ecosystems [J]. Proceedings Biological Sciences, 2010, 277(1682): 795-802.

    [35]

    Scott F, Blanchard J L, Andersen K H. Mizer: an R package for multispecies, trait-based and community size spectrum ecological modelling [J]. Methods in Ecology and Evolution, 2014, 5(10): 1121-1125. doi: 10.1111/2041-210X.12256

    [36]

    Wo J, Zhang C, Pan X, et al. Modeling the dynamics of multispecies fisheries: a case study in the coastal water of north Yellow Sea, China [J]. Frontiers in Marine Science, 2020(7): 524463.

    [37]

    Xia S, Yamakawa T, Zhang C, et al. A multispecies size-structured matrix model incorporating seasonal dynamics [J]. Ecological Modelling, 2021(453): 109612. doi: 10.1016/j.ecolmodel.2021.109612

    [38]

    Rice J C. Evaluating fishery impacts using metrics of community structure [J]. ICES Journal of Marine Science, 2000, 57(3): 682-688. doi: 10.1006/jmsc.2000.0735

    [39]

    Zhang C, Chen Y, Ren Y. The efficacy of fisheries closure in rebuilding depleted stocks: lessons from size-spectrum modeling [J]. Ecological Modelling, 2016(332): 59-66. doi: 10.1016/j.ecolmodel.2016.04.001

    [40]

    Anurag A A. The metabolic theory of Ecology [J]. Ecology, 2004, 85(7): 1790-1791.

    [41] 邹建伟. 南海北部陆架区渔业资源捕捞现状研究 [J]. 中国渔业经济, 2021, 39(3): 66-73.] doi: 10.3969/j.issn.1009-590X.2021.03.008

    Zou J W. Study on fishing status of fishery resources of continental shelf in the northern South China Sea [J]. Chinese Fisheries Economics, 2021, 39(3): 66-73. [ doi: 10.3969/j.issn.1009-590X.2021.03.008

    [42] 王迎宾, 郑基, 郑献之, 等. 舟山渔场禁渔线以外海域单拖网鱼类群落结构变动分析 [J]. 南方水产科学, 2012, 8(1): 8-15.] doi: 10.3969/j.issn.2095-0780.2012.01.002

    Wang Y B, Zheng J, Zheng X Z, et al. Variation analysis of single otter trawl fish community structure outside forbidden fishing line of Zhoushan fishing ground [J]. South China Fisheries Science, 2012, 8(1): 8-15. [ doi: 10.3969/j.issn.2095-0780.2012.01.002

    [43] 粟丽, 许友伟, 张魁, 等. 南海区拖网渔业发展趋势及其对渔业资源的影响 [J]. 南方水产科学, 2023, 19(4): 41-48.] doi: 10.12131/20230027

    Su L, Xu Y W, Zhang K, et al. Development trend of trawl fishery and its impact on fishery resources in South China Sea [J]. South China Fisheries Science, 2023, 19(4): 41-48. [ doi: 10.12131/20230027

    [44] 黄美珍. 台湾海峡及邻近海域6种对虾食性特征及其营养级研究 [J]. 台湾海峡, 2004, 23(4): 481-488.]

    Huang M Z. Study on feeding habits and nutrient level of shrimp species from Taiwan Strait and its adjacent sea areas [J]. Journal of Oceanography in Taiwan Strait, 2004, 23(4): 481-488. [

    [45]

    Rice J. Patterns of change in the size spectra of numbers and diversity of the North Sea fish assemblage, as reflected in surveys and models [J]. ICES Journal of Marine Science, 1996, 53(6): 1214-1225. doi: 10.1006/jmsc.1996.0146

    [46]

    Shin Y J, Rochet M J, Jennings S, et al. Using size-based indicators to evaluate the ecosystem effects of fishing [J]. ICES Journal of Marine Science, 2005, 62(3): 384-396.

    [47]

    Myers R A, Baum J K, Shepherd T D, et al. Cascading effects of the loss of apex predatory sharks from a coastal ocean [J]. Science, 2007, 315(5820): 1846-1850. doi: 10.1126/science.1138657

    [48]

    Casini M, Lövgren J, Hjelm J, et al. Multi-level trophic cascades in a heavily exploited open marine ecosystem [J]. Proceedings Biological Sciences, 2008, 275(1644): 1793-1801.

    [49]

    Genner M J, Sims D W, Southward A J, et al. Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale [J]. Global Change Biology, 2010, 16(2): 517-527. doi: 10.1111/j.1365-2486.2009.02027.x

    [50]

    Simpson S D, Jennings S, Johnson M P, et al. Continental shelf-wide response of a fish assemblage to rapid warming of the sea [J]. Current Biology, 2011, 21(18): 1565-1570.

  • 期刊类型引用(82)

    1. 何文佳,曾本和,朱成科,周朝伟. 茜素红S对异齿裂腹鱼稚鱼标记效果研究. 水产科学. 2024(01): 88-96 . 百度学术
    2. 刘瀚文,谭均军,王永猛,李阳希,王猛,柯森繁,石小涛,谭红林,王渊洋,李卫东,蒲进,金志军. 玉曲河流域裂腹鱼类游泳能力及其在鱼道设计中的应用. 水生态学杂志. 2024(04): 125-133 . 百度学术
    3. 何德奎,陈晋南,丁刘勇,徐一扬,黄俊豪,隋晓云. 雅鲁藏布江鱼类多样性现状与分布格局. 生物多样性. 2024(11): 224-239 . 百度学术
    4. 董纯,杨志,朱其广,罗安红,龚云,唐会元,陈小娟. 三峡水库外来鱼类资源状况初步研究. 长江流域资源与环境. 2023(05): 928-938 . 百度学术
    5. 潘虹伯,刘海平,郭明雄. 肠道微生物视域下西藏土著鱼类资源养护启示. 渔业研究. 2023(04): 385-398 . 百度学术
    6. 韩军军 ,陈朋 ,祁峰 ,封永辉 ,阿地力 ,胡江伟 ,张钰 ,蔡林钢 ,张人铭 . 新疆渭干河流域鱼类资源现状. 水产科学. 2022(01): 92-101 . 百度学术
    7. 熊芳园,刘晗,陆颖,王超超,程琳,李耀鹏,杨欣,吴兴华,陈宇顺. 长江源区河流及典型湖泊丰水期水质与鱼类群落分析. 中国环境监测. 2022(01): 86-94 . 百度学术
    8. 聂宇,杨彦敏,王一航,刘志锋,何春阳,陈歆. 拉萨市城关区近50年城市扩展过程对自然生境质量的综合影响. 生态学报. 2022(06): 2202-2220 . 百度学术
    9. 王金林,潘瑛子. 不同环境因子对拉萨裸裂尻鱼受精卵孵化的影响. 高原科学研究. 2022(01): 40-47 . 百度学术
    10. 王金林,王且鲁,曾本和,周建设. 不同开口饵料对拉萨裸裂尻仔鱼存活及生长的影响. 西藏农业科技. 2022(02): 62-68 . 百度学术
    11. 杨科,丁城志,陈小勇,丁刘勇,黄敏睿,陈晋南,陶捐. 怒江流域鱼类多样性及空间分布格局. 生物多样性. 2022(07): 121-133 . 百度学术
    12. 龚君华,曾本和. 拉萨裸裂尻鱼产后亲鱼护理方法. 水产养殖. 2022(08): 67-68 . 百度学术
    13. 曾本和,方媛林,何文佳,王金林. 振动和水流对拉萨裸裂尻鱼受精卵孵化性能的影响. 高原科学研究. 2022(03): 37-44 . 百度学术
    14. 孙欢欢,朱仁,冯秀,熊文,隋晓云,陈毅峰. 西藏湿地外来麦穗鱼生活史特征的适应性研究. 水生生物学报. 2022(12): 1780-1787 . 本站查看
    15. 朱仁,隋晓云,孙欢欢,贾银涛,冯秀,陈毅峰. 西藏拉鲁湿地和茶巴朗湿地外来鱼类群落结构及变动趋势. 水生生物学报. 2022(12): 1761-1769 . 本站查看
    16. 丁慧萍,张志明,谢从新,霍斌. 鱼类入侵对雅鲁藏布江水域生态系统的影响及其防治对策. 生态学杂志. 2022(12): 2440-2448 . 百度学术
    17. 李雷,吴松,王念民,覃东立,汤施展,金洪宇,朱挺兵,金星,马波. 雅鲁藏布江中游桑日至加查江段渔业资源群落结构特征. 水产学杂志. 2021(01): 40-45 . 百度学术
    18. 王万良,王金林,曾本和,周建设. 不同开口饵料对黑斑原(鱼兆)仔鱼生长和消化酶活性的影响. 水产学杂志. 2021(03): 6-11 . 百度学术
    19. 王金林,王且鲁,曾本和,潘瑛子. 不同养殖模式对拉萨裸裂尻仔鱼存活和生长的影响. 西藏农业科技. 2021(02): 93-97 . 百度学术
    20. 曾本和,杨成年,邱玉林,王金林,王万良,王建,朱成科. 1株拉萨裸裂尻鱼源致病性中间气单胞菌的分离鉴定. 水产科学. 2021(04): 603-609 . 百度学术
    21. 席杰,郑宗林,牟振波,刘飞,刘欣苑,申剑,刘海平,周燕. 黑斑原仔稚鱼藏匿行为研究. 水生生物学报. 2021(05): 1129-1137 . 本站查看
    22. 马宝珊,王思博,邵俭,李大鹏,谢从新,刘香江,霍斌. 雅鲁藏布江异齿裂腹鱼种群资源状况及其养护措施. 中国水产科学. 2020(01): 106-118 . 百度学术
    23. 杨鑫,李大鹏,邵俭,谢从新,刘香江,霍斌. 雅鲁藏布江双须叶须鱼种群资源现状及其渔业管理对策. 水生生物学报. 2020(01): 170-179 . 本站查看
    24. 次央,汤洪洁. 河长制下拉萨水生态文明建设进程探析. 水利技术监督. 2020(04): 83-85+163 . 百度学术
    25. 曾本和,王万良,张驰,王金林,周建设. 不同开口饲料及投喂频率对拉萨裂腹鱼仔鱼存活和生长的影响. 渔业现代化. 2020(04): 38-43 . 百度学术
    26. 金洪宇,李雷,金星,王念民,马清芝,尹家胜,马波. 西藏雅鲁藏布江下游黄斑褶(鱼兆)的个体繁殖力研究. 水产科学. 2020(05): 744-751 . 百度学术
    27. 邓捷,董滇红,张红星,姜维,赵虎,孔飞,许涛清,王启军. 雅鲁藏布江多雄藏布流域鱼类资源调查与多样性分析. 基因组学与应用生物学. 2020(08): 3468-3474 . 百度学术
    28. 何林强,王万良,曾本和,杨瑞斌,刘海平,曾小理,徐兆利,王建. 不同规格拉萨裂腹鱼温度耐受性研究. 水生生物学报. 2020(06): 1230-1238 . 本站查看
    29. 刘乐乐,刘海平,王纤纤,刘艳超,刘书蕴,刘孟君,次仁罗杰,饶昌伟. 西藏双须叶须鱼年龄与生长特点研究. 生物资源. 2020(06): 617-628 . 百度学术
    30. 杨威,廖华杰,胡程棚,谭友刚,张波,曾荣俊,刘晓瑞,何兴恒. 尖裸鲤人工驯养常见疾病防治试验. 湖北农业科学. 2020(S1): 177-179+184 . 百度学术
    31. 张登成,郑娇莉. 水电工程建设前后外来鱼类入侵问题初步研究. 人民长江. 2019(02): 83-89 . 百度学术
    32. 陈歆,靳甜甜,苏辉东,林俊强,王东波,刘国华,张俊洁. 拉萨河河流健康评价指标体系构建及应用. 生态学报. 2019(03): 799-809 . 百度学术
    33. 刘海平,刘孟君,刘艳超. 西藏巨须裂腹鱼早期发育特征. 水生生物学报. 2019(02): 367-378 . 本站查看
    34. 曾本和,张忭忭,刘海平,王建,王万良,朱成科,牟振波,王金林,周建设,旺久. 饲料蛋白质水平对拉萨裸裂尻鱼幼鱼生长、饲料利用、形体指标和肌肉营养成分的影响. 动物营养学报. 2019(03): 1231-1239 . 百度学术
    35. 周建设,曾本和,王且鲁,王万良,牟振波,王金林,张驰. 不同海拔拉萨裸裂尻线粒体16S rRNA基因序列变异及遗传多样性分析. 水产科技情报. 2019(03): 130-134 . 百度学术
    36. DING Huiping,GU Xiaohong,ZHANG Zhiming,HUO Bin,LI Dapeng,XIE Congxin. Growth and feeding habits of invasive Pseudorasbora parva in the Chabalang Wetland(Lhasa, China) and its trophic impacts on native fish. Journal of Oceanology and Limnology. 2019(02): 628-639 . 必应学术
    37. 刘源,杨学芬,杨瑞斌. 西藏茶巴朗湿地外来种大鳞副泥鳅年龄与生长的研究. 中国农学通报. 2019(17): 144-149 . 百度学术
    38. 张涛,陈建武,何力. 拉萨裸裂尻鱼5种组织乳酸脱氢酶和苹果酸脱氢酶的电泳分析. 上海农业学报. 2019(03): 105-109 . 百度学术
    39. 邵俭,马宝珊,段友健,谢从新,林少卿,周贤君,霍斌. 雅鲁藏布江拉萨裸裂尻鱼种群资源状况及其渔业管理对策. 应用生态学报. 2019(07): 2437-2446 . 百度学术
    40. 李雷,马波,金星,王鹏,陈中祥,王念民,吴松,张驰,龚君华. 西藏雅鲁藏布江中游裂腹鱼类优先保护等级定量评价. 中国水产科学. 2019(05): 914-924 . 百度学术
    41. 曾本和,刘海平,王建,王万良,周建设,王金林,朱成科,张忭忭. 饲料蛋白质水平对拉萨裸裂尻鱼幼鱼肌肉氨基酸及蛋白质代谢的影响. 中国水产科学. 2019(06): 1153-1163 . 百度学术
    42. 刘海平,刘孟君,牟振波,刘艳超,次仁罗杰,刘书蕴,刘乐乐,饶昌伟. 西藏双须叶须鱼早期发育特征. 水生生物学报. 2019(05): 1041-1055 . 本站查看
    43. 张涛,周剑光,何力. 双须叶须鱼5种组织乳酸脱氢酶和苹果酸脱氢酶的组织特异性分析. 安徽农业大学学报. 2018(02): 242-246 . 百度学术
    44. 陈锋,马宝珊,谢从新,张惠娟. 西藏扁头的年龄与生长特征. 淡水渔业. 2018(04): 45-51 . 百度学术
    45. 刘海平,牟振波,蔡斌,李宝海,张忭忭,周建设,张驰,潘瑛子,陈美群. 供给侧改革与科技创新耦合助推西藏渔业资源养护. 湖泊科学. 2018(01): 266-278 . 百度学术
    46. 李建川,魏聪,杨鸿清. 西藏引入观赏动物现状研究. 西藏科技. 2018(03): 72-75 . 百度学术
    47. 马波,李雷,王继隆,龚君华,张驰,纪锋,李宝海. 雅鲁藏布江拉萨裂腹鱼、异齿裂腹鱼及其自然杂交种的形态与COI基因条形码分析. 中国水产科学. 2018(04): 753-761 . 百度学术
    48. 金锦锦,张方方,仇玉萍,陈国柱. 小黄黝鱼繁殖期与非繁殖期的两性异形. 四川动物. 2018(05): 507-518 . 百度学术
    49. 李建川,土艳丽,林进,范丽卿. 放生对拉萨河流域鱼类物种多样性和群落结构的影响. 高原农业. 2018(05): 462-469 . 百度学术
    50. 刘艳超,刘海平,刘书蕴,李锡峰,宋小广. MS-222对两种规格的异齿裂腹鱼麻醉效果研究(英文). 水生生物学报. 2018(06): 1214-1223 . 本站查看
    51. 刘海平,刘艳超,刘书蕴,宋小广,次仁罗杰,刘孟君,刘乐乐,饶昌伟. 雅鲁藏布江中游双须叶须鱼群体繁殖力与繁殖策略研究(英文). 水生生物学报. 2018(06): 1169-1179 . 本站查看
    52. 刘艳超,刘海平,刘书蕴,刘孟君. 温度对尖裸鲤胚胎发育及其仔稚鱼生长性状的影响. 动物学杂志. 2018(06): 910-923 . 百度学术
    53. 龚君华,王继隆,李雷,张驰,马波,李宝海,纪锋. 西藏布裙湖全唇裂腹鱼年龄与生长的初步研究. 淡水渔业. 2017(06): 26-31 . 百度学术
    54. 巴桑,杨欣兰,黄香,贵确亚培. 拉萨河下游春、夏季浮游植物群落特征与水质评价. 高原科学研究. 2017(01): 25-38 . 百度学术
    55. 张军燕,余斌,李瑞娇. 眉县国家级水产种质资源保护区夏季鱼类多样性研究. 水产学杂志. 2017(03): 35-39 . 百度学术
    56. 陈国柱,仇玉萍,李丽萍. 塔里木盆地鱼类入侵及区系演变趋势. 生态学报. 2017(02): 700-714 . 百度学术
    57. 姜云鹏,乔玉. 雅鲁藏布江支流流域生态特征与生物资源保护研究——以尼木玛曲流域为例. 水利水电技术. 2017(10): 113-118+122 . 百度学术
    58. Zhang Chi,Li Baohai,Gong Junhua,Zhou Jianshe,Pan Yingzi,Wang Wanliang. Present Situation, Problems and Countermeasures of Fishery Resources Protection in Tibet. Animal Husbandry and Feed Science. 2016(02): 119-122 . 必应学术
    59. Zhou Jianshe,Min Zhiping,Zhang Chi,Li Baohai,Wang Wanliang,Pan Yingzi. Research Progress of Fishery Resources in Tibet. Animal Husbandry and Feed Science. 2016(04): 246-250 . 必应学术
    60. 陈美群,李宝海,周建设,潘瑛子,张驰,扎西拉姆. 黑斑原鮡的生物学研究进展. 安徽农业科学. 2016(03): 59-61 . 百度学术
    61. 吕永磊,郝世鑫,王宠,孙东方,王晓通,刘海平,商鹏. 拉萨河源头水域中浮游生物、鱼类资源调查与分析. 海洋与湖沼. 2016(02): 407-413 . 百度学术
    62. 范丽卿,刘海平,林进,普穷. 拉萨河流域外来鱼类的分布、群落结构及其与环境的关系. 水生生物学报. 2016(05): 958-967 . 本站查看
    63. 王万良,李宝海,周建设,潘瑛子,张驰,龚君华,陈美群,扎西拉姆. 两种不同模式人工驯养野生拉萨裂腹鱼试验效果比较. 西藏农业科技. 2016(01): 16-20 . 百度学术
    64. 张驰,龚君华,周建设,潘瑛子,李宝海. 拉萨河流域鱼类资源衰退的原因及对策. 现代农业科技. 2015(14): 259-260 . 百度学术
    65. 唐文家,何德奎. 青海省外来鱼类调查(2001-2014年). 湖泊科学. 2015(03): 502-510 . 百度学术
    66. 杨鑫,霍斌,段友健,马宝珊,谢从新. 西藏雅鲁藏布江双须叶须鱼的年龄结构与生长特征. 中国水产科学. 2015(06): 1085-1094 . 百度学术
    67. 武玮,徐宗学,殷旭旺,于松延. 渭河流域鱼类群落结构特征及其完整性评价. 环境科学研究. 2014(09): 981-989 . 百度学术
    68. 张驰,李宝海,周建设,李青,扎西拉姆,林斌. 西藏渔业资源保护现状、问题及对策. 水产学杂志. 2014(02): 68-72 . 百度学术
    69. 张熙骜,隋晓云,吕植,陈毅峰. 基于Maxent的两种入侵性鱼类(麦穗鱼和鲫)的全球适生区预测. 生物多样性. 2014(02): 182-188 . 百度学术
    70. 丁慧萍,覃剑晖,林少卿,格桑达娃,张志明,谢从新. 拉萨市茶巴朗湿地的外来鱼类. 水生态学杂志. 2014(02): 49-55 . 百度学术
    71. 刘海平,叶少文,杨雪峰,张良松,钟国辉,何勇平,李钟杰. 西藏尼洋河水生生物群落时空动态及与环境因子关系:2.着生藻类. 湖泊科学. 2013(06): 907-915 . 百度学术
    72. 刘海平,朱洪云. 西藏鱼类资源保护的地方立法现状与思考. 家畜生态学报. 2013(01): 86-89 . 百度学术
    73. 周建设,李宝海,潘瑛子,扎西拉姆,龚君华,李梅英. 西藏渔业资源调查研究进展. 中国农学通报. 2013(05): 53-57 . 百度学术
    74. 谭乾开,黎华寿,崔科,贺鸿志. 广东省恩平市锦江河上游野生鱼类资源群落生态特征调查. 佛山科学技术学院学报(自然科学版). 2012(04): 5-11 . 百度学术
    75. 旦增旺久,强巴央宗,刘海平,德吉巴卓,吴洪. 西藏裂腹鱼类出血病病原的初步研究. 水生态学杂志. 2012(06): 124-127 . 百度学术
    76. 涂志英,袁喜,王从锋,许晓蓉,刘德富,黄应平. 亚成体巨须裂腹鱼游泳能力及活动代谢研究. 水生生物学报. 2012(04): 682-688 . 本站查看
    77. 张军燕,张建军,沈红保,吕彬彬,王晓臣,邢娟娟. 小浪底水库调水调沙对壶口至三门峡段鱼类群落结构的影响. 生态学杂志. 2012(10): 2613-2618 . 百度学术
    78. 巴家文,陈大庆. 三峡库区的入侵鱼类及库区蓄水对外来鱼类入侵的影响初探. 湖泊科学. 2012(02): 185-189 . 百度学术
    79. 杨学峰,谢从新,马宝珊,霍斌,黄海平,张惠娟,许静. 拉萨裸裂尻鱼的食性. 淡水渔业. 2011(04): 40-44+49 . 百度学术
    80. 洛桑,旦增,布多. 拉萨河鱼类资源现状与利用对策. 西藏大学学报(自然科学版). 2011(02): 7-10 . 百度学术
    81. 范丽卿,土艳丽,李建川,方江平. 拉萨市拉鲁湿地鱼类现状与保护. 资源科学. 2011(09): 1742-1749 . 百度学术
    82. 范丽卿,刘海平,郭其强,潘刚. 拉萨甲玛湿地鱼类资源及其时空分布. 资源科学. 2010(09): 1657-1665 . 百度学术

    其他类型引用(34)

图(6)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 116
出版历程
  • 收稿日期:  2024-09-10
  • 修回日期:  2024-10-27
  • 网络出版日期:  2024-11-19
  • 刊出日期:  2025-04-14

目录

    /

    返回文章
    返回