肌肉特异表达microRNA的功能研究

石军, 褚武英, 张建社

石军, 褚武英, 张建社. 肌肉特异表达microRNA的功能研究[J]. 水生生物学报, 2015, 39(6): 1224-1230. DOI: 10.7541/2015.159
引用本文: 石军, 褚武英, 张建社. 肌肉特异表达microRNA的功能研究[J]. 水生生物学报, 2015, 39(6): 1224-1230. DOI: 10.7541/2015.159
SHI Jun, CHU Wu-Ying, ZHANG Jian-She. THE FUNCTIONAL STUDIES OF MUSCLE-SPECIFIC MICRORNAS[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(6): 1224-1230. DOI: 10.7541/2015.159
Citation: SHI Jun, CHU Wu-Ying, ZHANG Jian-She. THE FUNCTIONAL STUDIES OF MUSCLE-SPECIFIC MICRORNAS[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(6): 1224-1230. DOI: 10.7541/2015.159

肌肉特异表达microRNA的功能研究

基金项目: 

国家自然科学基金(No. 31402271

31230076)资助

THE FUNCTIONAL STUDIES OF MUSCLE-SPECIFIC MICRORNAS

  • 摘要: MicroRNA作为非编码小RNA分子在转录和后转录水平调控基因表达过程中扮演重要角色,已成为当前分子生物学的研究热点之一。近期已有研究证实,一些在肌肉细胞中特异表达microRNA包括miR-1、miR-206和miR-133可能对肌肉生长和发育很关键。众所周知,肌肉不仅是机体重要结构组织和运动器官,而且还是水产畜牧产品的重要蛋白源。聚焦这些肌肉特异myomiRs在肌肉生长和发育中的功能机理研究,不仅有助于揭示某些疾病的分子机制和解决医学上基因治疗难题;同时也为畜牧水产养殖提供科学应用理论依据。综述我们概括了miR-1, miR-206和miR-133最新研究进展,这将有助于深入了解其作用于肌肉生长和发育的功能和分子机制。
    Abstract: MicroRNAs are small non-coding RNA molecules that play important roles in the transcriptional and post-transcriptional regulation of gene expression. MicroRNAs have become one of the hotspot issues in molecular biology. Recently several microRNAs have been identified including miR-1, miR-206 and miR-133 that are specifically expressed in muscle cells and may be crucially involved in the development and growth of muscles. Muscles are an important part of body structure as well as a locomotive organ, and they are also the main protein source in aquaculture and animal husbandry. Therefore, functional studies of the roles of muscle-specific microRNAs will help uncover the mechanisms of certain diseases, facilitate medical gene therapy, and provide guidance for the animal husbandry and fishery. In this review we summarized the latest research on miR-1, miR-206 and miR-133 that shed lights on better understanding of their functions in muscle development and growth.
  • [1]

    Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297

    [2]

    Berezikov E, Guryev V, Van de Belt J, et al. Phylogenetic shadowing and computational identification of human microRNA genes[J]. Cell, 2005, 120(1):21-24

    [3]

    Lee C T, Risom T, Strauss W M. Evolutionary conservation of microRNA regulatory circuits:an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny[J]. DNA and Cell Biology, 2007, 26(4):209-218

    [4]

    Stark A, Brennecke J, Bushati N, et al. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution[J]. Cell, 2005, 123(6):1133-1146

    [5]

    Van Rooij E, Liu N, Olson E N. MicroRNAs flex their muscles[J]. Trends in Genetics, 2008, 24(4):159-166

    [6]

    Latronico M V, Condorelli G. MicroRNAs and cardiac pathology[J]. Nature Reviews Cardiology, 2009, 6(6):418-429

    [7]

    Bernstein E, Kim S Y, Carmell M A, et al. Dicer is essential for mouse development[J]. Nature Genetics, 2003, 35(3):215-217

    [8]

    O'Rourke J R, Georges S A, Seay H R, et al. Essential role for Dicer during skeletal muscle development[J]. Developmental Biology, 2007, 311(2):359-368

    [9]

    Chen J F, Murchison E P, Tang R, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure[J]. Proceeding of the National Academy of Sciences of the USA, 2008, 105(6):2111-2116

    [10]

    Zhao Y, Ransom J F, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J]. Cell, 2007, 129(2):303-317

    [11]

    Townley-Tilson W H, Callis T E, Wang D. MicroRNAs 1, 133, and 206:critical factors of skeletal and cardiac muscle development, function, and disease[J]. The International Journal of Biochemistry Cell Biology, 2010, 42(8):1252-1255

    [12]

    Sweetman D, Goljanek K, Rathjen T, et al. Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133[J]. Developmental Biology, 2008, 321(2):491-499

    [13]

    Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis[J]. Nature, 2005, 436(7048):214-220

    [14]

    Chen J F, Mandel E M, Thomson J M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nature Genetics, 2006, 38(2):228-233

    [15]

    Tuddenham L, Wheeler G, Ntounia-Fousara S, et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells[J]. FEBS Letters, 2006, 580(17):4214-4217

    [16]

    Lu J, McKinsey T A, Zhang C L, et al. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class Ⅱ histone deacetylases[J]. Molecular Cell, 2000, 6(2):233-244

    [17]

    Kwon C, Han Z, Olson E N, et al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(52):18986-18991

    [18]

    Sokol N S, Ambros V. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth[J]. Genes Development, 2005, 19(19):2343-2354

    [19]

    Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2[J]. Nature Medicine, 2007, 13(4):486-491

    [20]

    Xiao J, Luo X, Lin H, et al. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts[J]. Journal of Biological Chemistry, 2007, 282(17):12363-12367

    [21]

    Mommsen T P. 4 Growth and Metabolism[C]. The Physiology of Fishes. 1997, 65

    [22]

    Greer-Walker M. Growth and development of the skeletal muscle fibres of the cod(Gadus morhua L.)[J]. Journal du Conseil, 1970, 33(2):228-244

    [23]

    Stickland N C. Growth and development of muscle fibres in the rainbow trout(Salmo gairdneri)[J]. Journal of Anatomy, 1983, 137(Pt 2):323

    [24]

    Johnston I A. Muscle development and growth:potential implications for flesh quality in fish[J]. Aquaculture, 1999, 177(1):99-115

    [25]

    Alexander M S, Kawahara G, Kho A T, et al. Isolation and transcriptome analysis of adult zebrafish cells enriched for skeletal muscle progenitors[J]. Muscle Nerve, 2011, 43(5):741-750

    [26]

    Oustanina S, Hause G, Braun T. Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification[J]. The EMBO Journal, 2004, 23(16):3430-3439

    [27]

    Kuang S, Charg S B, Seale P, et al. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis[J]. The Journal of Cell Biology, 2006, 172(1):103-113

    [28]

    Relaix F, Montarras D, Zaffran S, et al. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells[J]. The Journal of Cell Biology, 2006, 172(1):91-102

    [29]

    Relaix F, Rocancourt D, Mansouri A, et al. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells[J]. Nature, 2005, 435(7044):948-953

    [30]

    Seale P, Sabourin L A, Girgis-Gabardo A, et al. Pax7 is required for the specification of myogenic satellite cells[J]. Cell, 2000, 102(6):777-786

    [31]

    Zammit P S, Partridge T A, Yablonka-Reuveni Z. The skeletal muscle satellite cell:the stem cell that came in from the cold[J]. Journal of Histochemistry Cytochemistry, 2006, 54(11):1177-1191

    [32]

    Shi J, Chu W Y, Zhang J S. Muscle growth, differentiation and gene expression regulation in fish[J]. Acta Hydrobiologica Sinica, 2013, 37(6):1145-1152[石军,褚武英,张建社.鱼类肌肉生长分化与基因表达调控.水生生物学报, 2013, 37(6):1145-1152]

    [33]

    Chen J F, Tao Y, Li J, et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7[J]. The Journal of Cell Biology, 2010, 190(5):867-879

    [34]

    McCarthy J J, Esser K A. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy[J]. Journal of Applied Physiology, 2007, 102(1):306-313

    [35]

    McCarthy J J, Esser K A, Andrade F H. MicroRNA-206 is over-expressed in the diaphragm but not the hindlimb muscle of mdx mouse[J]. American Journal of Physiology-Cell Physiology, 2007, 293(1):C451-C457

    [36]

    Clop A, Marcq F, Takeda H, et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep[J]. Nature Genetics, 2006, 38(7):813-818

    [37]

    Grimson A, Farh K K H, Johnston W K, et al. MicroRNA targeting specificity in mammals:determinants beyond seed pairing[J]. Molecular Cell, 2007, 27(1):91-105

    [38]

    Mishima Y, Abreu-Goodger C, Staton A A, et al. Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization[J]. Genes Development, 2009, 23(5):619-632

    [39]

    Yin V P, Lepilina A, Smith A, et al. Regulation of zebrafish heart regeneration by miR-133[J]. Developmental Biology, 2012, 365(2):319-327

    [40]

    Ji F, Zhang H, Wang Y, et al. MicroRNA-133a, downregulated in osteosarcoma, suppresses proliferation and promotes apoptosis by targeting Bcl-xL and Mcl-1[J]. Bone 2013, 56(1):220-226

    [41]

    Qin Y, Dang X, Li W, et al. miR-133a functions as a tumor suppressor and directly targets FSCN1 in pancreatic cancer[J]. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 2013; 21(6):353-363

    [42]

    Mataki H, Enokida H, Chiyomaru T, et al. Downregulation of the microRNA-1/133a cluster enhances cancer cell migration and invasion in lung-squamous cell carcinoma via regulation of Coronin1C[J]. Journal of Human Genetics, 2015, 60(2):53-61

    [43]

    Yin H, Pasut A, Soleimani V D, et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16[J]. Cell Metabolism, 2013, 17(2):210-224

    [44]

    Yildirim SS, Akman D, Catalucci D, et al. Relationship between downregulation of miRNAs and increase of oxidative stress in the development of diabetic cardiac dysfunction:junctin as a target protein of miR-1[J]. Cell Biochem Biophys, 2013, 67(3):1397-1408

    [45]

    Park C Y, Choi Y S, McManus M T. Analysis of microRNA knockouts in mice[J]. Human Molecular Genetics, 2010, 19(R2):R169-R175

    [46]

    Van Rooij E, Sutherland L B, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA[J]. Science, 2007, 316(5824):575-579

    [47]

    Callis T E, Pandya K, Seok H Y, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice[J]. Journal of Clinical Investigation, 2009, 119(9):2772-2786

    [48]

    Liu N, Bezprozvannaya S, Williams A H, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart[J]. Genes Development, 2008, 22(23):3242-3254

    [49]

    Van Rooij E, Quiat D, Johnson B A, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance[J]. Developmental Cell, 2009, 17(5):662-673

    [50]

    Williams A H, Valdez G, Moresi V, et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice[J]. Science, 2009, 326(5959):1549-1554

    [51]

    Zhao Y, Ransom J F, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J]. Cell, 2007, 129(2):303-317

    [52]

    Heidersbach A, Saxby C, Carver-Moore K, et al. microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart[J]. Elife, 2013, 2:e01323

    [53]

    Wystub K, Besser J, Bachmann A, et al. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development[J]. PLoS Genet, 2013, 9(9):e1003793

    [54]

    Zhang F, Cong L, Lodato S, et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription[J]. Nature Biotechnology, 2011, 29(2):149-153

    [55]

    Miller J C, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology, 2011, 29(2):143-148

    [56]

    Cermak T, Doyle E L, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting[J]. Nucleic Acids Research, 2011, 39(12):e82-e82

    [57]

    Wood A J, Lo T W, Zeitler B, et al. Targeted genome editing across species using ZFNs and TALENs[J]. Science, 2011, 333(6040):307-307

    [58]

    Hockemeyer D, Wang H, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases[J]. Nature Biotechnology, 2011, 29(8):731-734

    [59]

    Bedell V M, Wang Y, Campbell J M, et al. In vivo genome editing using a high-efficiency TALEN system[J]. Nature, 2012, 491(7422):114-118

    [60]

    Lei Y, Guo X, Liu Y, et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases(TALENs)[J]. Proceedings of the National Academy of Sciences, 2012, 109(43):17484-17489

    [61]

    Sander J D, Cade L, Khayter C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs[J]. Nature Biotechnology, 2011, 29(8):697-698

    [62]

    Cade L, Reyon D, Hwang W Y, et al. Highly efficient generation of heritable zebrafish gene mutations using homo-and heterodimeric TALENs[J]. Nucleic Acids Research, 2012, 40(16):8001-8010

    [63]

    Huang P, Xiao A, Zhou M, et al. Heritable gene targeting in zebrafish using customized TALENs[J]. Nature Biotechno-logy, 2011, 29(8):699-700

    [64]

    Moore F E, Reyon D, Sander J D, et al. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases(TALENs)[J]. PLoS ONE, 2012, 7(5):e37877

    [65]

    Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823

    [66]

    Gaj T, Gersbach C A, Barbas Ⅲ C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology, 2013, 31(7):397-405

    [67]

    Shen B, Zhang J, Wu H, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting[J]. Cell Research, 2013, 23(5):720-723

    [68]

    Chang N, Sun C, Gao L, et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos[J]. Cell Research, 2013, 23(4):465-472

    [69]

    Joung J K, Sander J D. TALENs:a widely applicable technology for targeted genome editing[J]. Nature Reviews Molecular Cell Biology, 2013, 14(1):49-55

    [70]

    Hwang W Y, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system[J]. Nature Biotechnology, 2013, 31(3):227-229

    [71]

    Xiao A, Wang Z, Hu Y, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish[J]. Nucleic Acids Research, 2013, 41(14):e141

  • 期刊类型引用(2)

    1. 何玉慧,李响,石军. 鱼类肌肉生长研究进展. 水产学报. 2024(09): 3-23 . 百度学术
    2. 张世勇,钟立强,秦钦,王明华,潘建林,陈校辉,边文冀. 斑点叉尾GHRH基因3个SNPs位点及其单倍型组合与生长性状的关联分析. 水生生物学报. 2016(05): 886-893 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  1645
  • HTML全文浏览量:  1
  • PDF下载量:  538
  • 被引次数: 5
出版历程
  • 收稿日期:  2014-12-09
  • 修回日期:  2015-03-10
  • 发布日期:  2015-11-24

目录

    /

    返回文章
    返回