REN Ping, LIANG Xu-Fang, FANG Liu, HE Shan, XIAO Qian-Qian, SHI Deng-Yong. COMPARATIVE STUDY OF THE DIFFERENCE IN GLUCOSE AND DEXTRIN UTILIZATION IN THE CHINESE PERCH (SINIPERCA CHUATSI)[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(2): 364-371. DOI: 10.7541/2020.044
Citation: REN Ping, LIANG Xu-Fang, FANG Liu, HE Shan, XIAO Qian-Qian, SHI Deng-Yong. COMPARATIVE STUDY OF THE DIFFERENCE IN GLUCOSE AND DEXTRIN UTILIZATION IN THE CHINESE PERCH (SINIPERCA CHUATSI)[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(2): 364-371. DOI: 10.7541/2020.044

COMPARATIVE STUDY OF THE DIFFERENCE IN GLUCOSE AND DEXTRIN UTILIZATION IN THE CHINESE PERCH (SINIPERCA CHUATSI)

Funds: Supported by the China Agriculture Research System (CARS-46); Wuhan Morning Light Plan of Youth Science and Technology (2017050304010318); the National Natural Science Foundation of China (31772822)
  • Received Date: January 08, 2019
  • Rev Recd Date: September 16, 2019
  • Available Online: January 03, 2020
  • Published Date: February 29, 2020
  • In this study, we compared the utilization of different carbohydrates in Chinese perch and further explored the molecular mechanism of carbohydrate utilization in carnivorous fish. Water, plasma, liver and muscle samples were collected at 0, 1, 2, 3, 4, 8, 12 and 24h after Chinese perch were fed glucose and dextrin at a 1670 mg/kg dose. The parameters urine sugar, blood glucose, blood triglycerides, blood insulin, and liver and muscle glycogen and the mRNA expression levels of glucose metabolism-related genes were detected. The results showed the following: (1) Within 1—12h after feeding, the blood glucose level was significantly higher in the glucose group than in the dextrin group, while the blood glucose and insulin levels were not significantly different between the two groups. (2) The triglyceride content at 2—4h was higher in the dextrin group than in the glucose group, and the liver glycogen content at 1h was significantly higher in the dextrin group than in the glucose group. Furthermore, the muscle glycogen content at 24h was significantly higher in the dextrin group than in the glucose group. (3) One hour after feeding, the mRNA expression levels of glucokinase (GK), fatty acid synthetase (FAS), acetyl-CoA carboxylase type I (ACC1) and citrate synthase (CS) were significantly higher in the dextran group than in the glucose group, and the expression levels of glycogen synthase (GS) and CS mRNA at 8h were significantly lower in the dextrin group than in the glucose group. These results demonstrated that the utilization efficiency of dextrin was better than that of dextrose and that the intake of dextrin could promote the synthesis of glycogen and fat.
  • [1]
    Suarez R K, Mommsen T P. Gluconeogenesis in teleost fishes [J]. Canadian Journal of Zoology, 1987, 65(8): 1869-1882. doi: 10.1139/z87-287
    [2]
    Cowey C B, Walton M J. Intermediary metabolism [C]. Halver J E. Fish Nutrition. New York: Academic Press, 1989: 259—329
    [3]
    Cho C Y, Kaushik S J. Nutritional energetics in fish: energy and protein utilization in rainbow trout (Salmo gairdneri) [J]. Nutrition Diet, 1990, 61(1): 132-172.
    [4]
    Kaushik S J, Médale F. Energy requirements, utilization and dietary supply to salmonids [J]. Inpharma Weekly, 1997, 1069(1): 10.
    [5]
    Wilson R P. Utilization of dietary carbohydrate by fish [J]. Aquaculture, 1994, 124(1-4): 67-80. doi: 10.1016/0044-8486(94)90363-8
    [6]
    Hutchins C G, Rawles S D, Gatlin D M III. Effects of dietary carbohydrate kind and level on growth, body composition and glycemic response of juvenile sunshine bass (Morone chrysops♀×M. saxatilis♂) [J]. Aquaculture, 1998, 161(1-4): 187-199.
    [7]
    Millikin M R. Qualitative and quantitative nutrient requirements of fishes: a review [J]. Fishery Bulletin United States National Marine Fisheries Service, 1982, 80(1): 655-696.
    [8]
    Moon T W. Glucose intolerance in teleost fish: fact or fiction [J]? Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 2001, 129(2): 243-249.
    [9]
    Wilson R P, Poe W E. Apparent inability of channel catfish to utilize dietary mono-and disaccharides as energy sources [J]. Journal of Nutrition, 1987, 117(2): 280. doi: 10.1093/jn/117.2.280
    [10]
    Mazur C N, Higgs D A, Plisetskaya E, et al. Utilization of dietary starch and glucose tolerance in juvenile chinook salmon (Oncorhynchus tshawytscha) of different strains in seawater [J]. Fish Physiology and Biochemistry, 1992, 10(4): 303-313. doi: 10.1007/BF00004479
    [11]
    Deng D F, Refstie S, Hemre G I, et al. A new technique of feeding, repeated sampling of blood and continuous collection of urine in white sturgeon [J]. Fish Physiology and Biochemistry, 2000, 22(3): 191-197. doi: 10.1023/A:1007803307617
    [12]
    Deng D F, Refstie S, Hung S S. Glycemic and glycosuric responses in white sturgeon (Acipenser transmontanus) after oral administration of simple and complex carbohydrates [J]. Aquaculture, 2001, 199(1): 107-117.
    [13]
    Legate N J, Bonen A, Moon T W. Glucose tolerance and peripheral glucose utilization in rainbow trout (Oncorhynchus mykiss), American eel (Anguilla rostrata), and black bullhead catfish (Ameiurus melas) [J]. General and Comparative Endocrinology, 2001, 122(1): 48-59. doi: 10.1006/gcen.2001.7620
    [14]
    Enes P, Peres H, Couto A, et al. Growth performance and metabolic utilization of diets including starch, dextrin, maltose or glucose as carbohydrate source by gilthead sea bream (Sparus aurata) juveniles [J]. Fish Physiology and Biochemistry, 2010(36): 903-910.
    [15]
    马爱军, 陈四清, 雷霁霖, 等. 饲料中主要能量物质对大菱鲆幼鱼生长的影响 [J]. 海洋与湖沼, 2001, 32(5): 527-533. doi: 10.3321/j.issn:0029-814X.2001.05.009

    Ma A J, Chen S Q, Lei J L, et al. Influences of the main energy matter in feed on the growth of young turbot, Scophthalmus maximus [J]. Oceanologia et Limnologia Sinica, 2001, 32(5): 527-533. doi: 10.3321/j.issn:0029-814X.2001.05.009
    [16]
    聂琴, 苗惠君, 苗淑彦, 等. 不同糖源及糖水平对大菱鲆糖代谢酶活性的影响 [J]. 水生生物学报, 2013, 37(3): 425-433. doi: 10.7541/2013.39

    Nie Q, Miao H J, Miao S Y, et al. Effects of dietary carbohydrate sources and levels on the activities of carbohydrate metabolic enzymes in turbot [J]. Acta Hydrobiologica Sinica, 2013, 37(3): 425-433. doi: 10.7541/2013.39
    [17]
    高妍, 李静辉, 方珍珍, 等. 饲料中糊精水平对乌克兰鳞鲤生长及糖代谢的影响 [J]. 动物营养学报, 2015, 27(5): 1401-1410. doi: 10.3969/j.issn.1006-267x.2015.05.010

    Gao Y, Li J H, Fang Z Z, et al. Effects of dietary dextrin level on growth and carbohydrate metabolism of ukraine scaly carp (Cyprinus carpio) [J]. Chinese Journal of Animal Nutrition, 2015, 27(5): 1401-1410. doi: 10.3969/j.issn.1006-267x.2015.05.010
    [18]
    Enes P, Panserat S, Kaushik S, et al. Rapid metabolic adaptation in European sea bass (Dicentrarchus labrax) juveniles fed different carbohydrate sources after heat shock stress [J]. Comparative Biochemistry and Physiology, Part A, 2006(145): 73-81.
    [19]
    Lee S M, Kim K D, Lall S P. Utilization of glucose, maltose, dextrin and cellulose by juvenile flounder (Paralichthys olivaceus) [J]. Aquaculture, 2003(221): 427-438.
    [20]
    Tan Q, Xie S Q, Zhu X, et al. Effect of dietary carbohydrate sources on growth performance and utilization for gibel carp (Carassius auratus gibelio) and Chinese longsnout catfish (Leiocassis longirostris Günther) [J]. Aquaculture Nutrition, 2006(12): 61-70.
    [21]
    Hung S S. Carbohydrate utilization by white sturgeon as assessed by oral administration tests [J]. Journal of Nutrition, 1991, 121(10): 1600-1605. doi: 10.1093/jn/121.10.1600
    [22]
    Furuichi M, Yone Y. Availability of carbohydrate in nutrition of carp and red sea bream [J]. Bulletin of the Japanese Society for Scientific Fisheries, 1982, 48(7): 945-948. doi: 10.2331/suisan.48.945
    [23]
    Lin S C, Liou C H, Shiau S Y. Renal threshold for urinary glucose excretion by tilapia in response to orally administered carbohydrates and injected glucose [J]. Fish Physiology and Biochemistry, 2000, 23(2): 127-132. doi: 10.1023/A:1007888108057
    [24]
    Liang X F, Liu J K, Huang B Y. The role of sense organs in the feeding behaviour of Chinese perch [J]. Journal of Fish Biology, 1998, 52(5): 1058-1067. doi: 10.1111/j.1095-8649.1998.tb00603.x
    [25]
    Liang X F, Lin X, Li S, Liu J K. Impact of environmental and innate factors on the food habit of Chinese perch Siniperca chuatsi (Basilewsky) (Percichthyidae) [J]. Aquaculture Research, 2008, 39(3): 150-157.
    [26]
    Liang X F, Oku H, Ogata H Y, et al. Weaning Chinese perch Siniperca chuatsi (Basilewsky) onto artificial diets based upon its specific sensory modality in feeding [J]. Aquaculture Research, 2001, 32(s1): 76-82.
    [27]
    Suárez M D, Sanz A, Bazoco J, et al. Metabolic effects of changes in the dietary protein: carbohydrate ratio in eel (Angilla anguilla) and trout (Oncorhynchus mykiss) [J]. Aquaculture International, 2002, 10(2): 143-156. doi: 10.1023/A:1021371104839
    [28]
    黄鹤忠, 丁磊, 宋学宏, 等. 青鱼和草鱼葡萄糖耐量的比较研究 [J]. 中国水产科学, 2005, 12(4): 496-500. doi: 10.3321/j.issn:1005-8737.2005.04.022

    Huang H Z, Ding L, Song X H, et al. Comparative research on glucose tolerance between black carp Mylopharyngodon piceus and grass carp Ctenopharyngodon idellus [J]. Journal of Fishery Sciences of China, 2005, 12(4): 496-500. doi: 10.3321/j.issn:1005-8737.2005.04.022
    [29]
    杨伟, 叶继丹, 王琨, 等. 斜带石斑鱼经葡萄糖灌喂后的代谢反应 [J]. 水生生物学报, 2012, 36(3): 563-568.

    Yang W, Ye J D, Wang K, et al. Glucose tolerance in grouper (Epinphelus coioides) [J]. Acta Hydrobiologica Sinica, 2012, 36(3): 563-568.
    [30]
    He S, Liang X F, Sun J, et al. Insights into food preference in hybrid F1 of Siniperca chuatsi (♀) × Siniperca scherzeri (♂) mandarin fish through transcriptome analysis [J]. BMC Genomics, 2013, 14(1): 601. doi: 10.1186/1471-2164-14-601
    [31]
    Hemre G I, Torrissen O, Krogdahl Å, et al. Glucose tolerance in Atlantic salmon, Salmo salar L. dependence on adaption to dietary starch and water temperature [J]. Aquaculture Nutrition, 2010, 1(2): 69-75.
    [32]
    Hemre G, Mommsen T P, Krogdahl Å. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes [J]. Aquaculture Nutrition, 2015, 8(3): 175-194.
    [33]
    Hemre G I, Hansen T. Utilisation of different dietary starch sources and tolerance to glucose loading in Atlantic salmon (Salmo salar), during parrsmolt transformation [J]. Aquaculture, 1998, 161(1): 145-157.
    [34]
    Sundby A, Eliassen K, Refstie T, et al. Plasma levels of insulin, glucagon and glucagon-like peptide in salmonids of different weights [J]. Fish Physiology & Biochemistry, 1991, 9(3): 223-230.
    [35]
    Enes P, Peres H, Sanchezgurmaches J, et al. Insulin and IGF-I response to a glucose load in European sea bass (Dicentrarchus labrax) juveniles [J]. Aquaculture, 2011, 315(3): 321-326.
    [36]
    Enes P, Panserat S, Kaushik S, et al. Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles [J]. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 2006, 143(1): 89-96.
    [37]
    Kaslow H R, Lesikar D D, Antwi D, et al. L-type glycogen synthase. Tissue distribution and electrophoretic mobility [J]. Journal of Biological Chemistry, 1985, 260(18): 9953-9956.
    [38]
    de la Iglesia N, Mukhtar M, Seoane J, et al. The role of the regulatory protein of glucokinase in the glucose sensory mechanism of the hepatocyte [J]. Journal of Biological Chemistry, 2000, 275(14): 10597-10603. doi: 10.1074/jbc.275.14.10597
    [39]
    Peres H, Goncalves P, Oliva-Teles A. Glucose tolerance in gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) [J]. Aquaculture, 1999, 179(1-4): 415-423.
    [40]
    蔡春芳, 刘影, 陈立侨, 等. 异育银鲫口服不同剂量葡萄糖后的代谢反应 [J]. 水生生物学报, 2003, 27(6): 602-606. doi: 10.3321/j.issn:1000-3207.2003.06.008

    Cai C F, Liu Y, Chen L Q, et al. Metabolic responses of allogynogeneticgbel carp after oral administration of different doses of glucose [J]. Acta Hydrobiologica Sinica, 2003, 27(6): 602-606. doi: 10.3321/j.issn:1000-3207.2003.06.008
  • Related Articles

    [1]HU Shao-Qiu, DUAN Rui, ZHANG Dong-Xu, BAO Jiang-Hui, LÜ Hua-Fei, DUAN Ming. CLASSIFICATION OF 3D POINT CLOUD MODELS OF FISH BASED ON POINT TRANSFORMER APPROACH[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(2): 022515. DOI: 10.7541/2024.2024.0053
    [2]FANG Xin-Zheng, HU Wei-Hua, CHEN Rui-Yi, ZENG Yan-Qing, CHAI Xue-Jun, XU Dong-Dong. EVALUATION OF THE ARTIFICIAL OXYTOCIN EFFECT OF GNRH INJECTION AND ORAL ADMINISTRATION ON SMALL YELLOW CROAKER (LARIMICHTHYS POLYACTIS)[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(11): 1807-1815. DOI: 10.7541/2023.2022.0497
    [3]LI Zhong, LIANG Hong-Wei, ZOU Gui-Wei. A RAPID PCR-QUALITY DNA EXTRACTION METHOD IN FISH[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(2): 365-367. DOI: 10.3724/SP.J.1035.2012.00365
    [4]Shahid Mahboob, Bilal Hussain, Zahid Iqbal, Abdul Shakoor Chaudhry. ESTIMATION OF VOLATILE CONSTITUENTS IN THE FISH FLESH FROM WILD AND FARMED CIRRHINA MRIGALA AND CYPRINUS CARPIO[J]. ACTA HYDROBIOLOGICA SINICA, 2009, 33(3): 484-491.
    [5]WANG Bai, RU Shao-Guo, YU Zi-Shan, FANG Yan. LIFECYCLE OF FREE-LIVING MARINE NEMATODE CHROMADORINA SP1[J]. ACTA HYDROBIOLOGICA SINICA, 2007, 31(5): 751-754.
    [6]YANG Wei-Dong, ZHANG Xin-Lian, LIU Jie-Sheng, GAO Jie, ZHANG Ping. INHIBITORY EFFECT AND SINKING BEHAVIOUR OF WOOD MEALS FROM CHINA FIR ON ALEXANDRIUM TAMARENSE IN CULTURES[J]. ACTA HYDROBIOLOGICA SINICA, 2005, 29(2): 215-219.
    [7]CAI Chun-Fang, LIU Ying, CHEN Li-Qiao, SONG Xue-Hong, WU Ping. METABOLIC RESPONSES OF ALLOGYNOGENETIC GBEL CARP AFTER ORAL ADMINISTRATION OF DIFFERENT DOSES OF GLUCOSE[J]. ACTA HYDROBIOLOGICA SINICA, 2003, 27(6): 602-606.
    [8]Wu Jihua, Liang Yanling, Sun Xida. NEWLY RECORDED SPECIES OF FREE-LIVING NEMATODES FROM CHINA (CHROMADORIDA,ENOPLIDA ARAEOLAIMIDA)[J]. ACTA HYDROBIOLOGICA SINICA, 1997, 21(4): 320-321.
    [9]Li Shaorong, Lin Huimin. PURIFICATION AND CHARACTERIZATION OF PHYCOERYTHRIN FROM RHODOSORUS MARINUS[J]. ACTA HYDROBIOLOGICA SINICA, 1996, 20(3): 257-264.
    [10]Zhou Dinggang, Wang kangning. EFFECTS OF RESERPINE AND DOMPERIDONE ON LHRH-A INDUCED OVULATION IN MONOPTERUS ALBUS[J]. ACTA HYDROBIOLOGICA SINICA, 1993, 17(1): 98-100.

Catalog

    Article views (3365) PDF downloads (64) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return