LIU Ni, PENG Zuo-Gang. ANALYSIS OF INTESTINAL MICROORGANISMS IN TRIPLOPHYSA ROSA (TELEOSTEI, CYPRINIFORMES)[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(1): 118-124. DOI: 10.7541/2020.2019.169
Citation: LIU Ni, PENG Zuo-Gang. ANALYSIS OF INTESTINAL MICROORGANISMS IN TRIPLOPHYSA ROSA (TELEOSTEI, CYPRINIFORMES)[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(1): 118-124. DOI: 10.7541/2020.2019.169

ANALYSIS OF INTESTINAL MICROORGANISMS IN TRIPLOPHYSA ROSA (TELEOSTEI, CYPRINIFORMES)

Funds: Supported by the National Natural Science Foundation of China(31872204)
  • Received Date: August 04, 2019
  • Rev Recd Date: March 09, 2020
  • Available Online: August 19, 2020
  • Published Date: January 29, 2021
  • Triplophysa rosa is a typical cave-dwelling fish distributed at Wulong County, Chongqing, China. It has degenerated eyes, albino skin, and highly developed sense organs, but its gut microbial function adapted to cave remains to be settled. The aims of this study were to analyze the structure and diversity of intestinal microorganisms in T. rosa and to explore the function of intestinal microorganisms. We extracted total intestinal DNA of 5 T. rosa, and then sequenced the V3—V4 region of 16S rRNA using Illumina Miseq sequencing technology. The number of operational taxonomic units (OTUs) of intestinal microorganisms was counted to analyze species composition, abundance, and Alpha diversity. The function of intestinal microorganisms was predicted by PICRUSt. A total of 451 OTUs of the high-quality sequences were obtained, belonging to 19 phyla, 31 classes, 87 orders, 146 families, 253 genera, and 320 species. At the phylum level, Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant microorganisms. At the genus level, Aeromonas, Edwardsiella, Plesiomonas, and Shewanella were the main microorganisms. Functional prediction showed that most of the genes encoded by intestinal microorganisms are related to metabolism with the highest relationship with “amino acid transport and metabolism” and “carbohydrate transport and metabolism”. The composition of the microorganisms in the intestinal tract of T. rosa is complex, and functional analysis is helpful to understand the influence of intestinal microorganisms on its feeding, providing a theoretical basis for further study on fish diet.
  • [1]
    Chen X Y, Yang J X. Triplophysa rosa sp. nov.: a new blind loach from China [J]. Journal of Fish Biology, 2005, 66(3): 599-608. doi: 10.1111/j.0022-1112.2005.00622.x
    [2]
    黄静, 彭作刚, 王志坚. 贝氏高原鳅与玫瑰高原鳅脑大体解剖结构的比较 [J]. 西南师范大学学报(自然科学版), 2013, 38(3): 94-100.

    Huang J, Peng Z G, Wang Z J. Comparison of the gross anatomy of the brains between Triplophysa bleekeri and Triplophysa rosa [J]. Journal of Southwest China Normal University (Natural Science Edition), 2013, 38(3): 94-100. [
    [3]
    牛亚兵. 玫瑰高原鳅和贝氏高原鳅视觉器官比较组织学研究 [D]. 重庆: 西南大学, 2017: 19-35.

    Niu Y P. Comparative histological study of visual organs between Triplophysa rosa and Triplophysa bleekeri [D]. Chongqing: Southwest University, 2017: 19-35.
    [4]
    肖颖琦. 玫瑰高原鳅体色白化的遗传学基础研究 [D]. 重庆: 西南大学, 2017: 16-18

    Xiao Y Q. Genetic basis of the albinism in the cavefish Triplophysa rosa [D]. Chongqing: Southwest University, 2017: 16-18.
    [5]
    Shi C, Yao M, Lv X, et al. Body and organ metabolic rates of a cave fish, Triplophysa rosa: influence of light and ontogenetic variation [J]. Journal of Comparative Physiology B, 2018, 188(6): 947-955. doi: 10.1007/s00360-018-1178-x
    [6]
    Wang J, Tang Q, Wang Z, et al. The complete mitogenome sequence of a cave loach Triplophysa rosa (Teleostei, Balitoridae, Nemacheilinae) [J]. Mitochondrial DNA, 2012, 23(5): 366-368. doi: 10.3109/19401736.2012.696628
    [7]
    Zhao J, Zhao K, Peng Z. Development and characterization of eleven microsatellite markers for an endangered cavefish (Triplophysa rosa Chen and Yang, 2005) using 454 sequencing [J]. Journal of Applied Ichthyology, 2014, 30(5): 1056-1058. doi: 10.1111/jai.12474
    [8]
    赵金凤. 玫瑰高原鳅保护遗传学研究 [D]. 重庆: 西南大学, 2015: 27-32

    Zhao J F. Conservation genetics of Triplophysa rosa (Teleostei: Cypriniformes) [D]. Chongqing: Southwest University, 2015: 27-32.
    [9]
    殷名称. 鱼类生态学 [M]. 北京: 中国农业出版社, 1995: 64-78.

    Yin M C. Fish Ecology [M]. Beijing: China Agriculture Press, 1995: 64-78
    [10]
    Baldo L, Pretus J L, Riera J L, et al. Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes [J]. The ISME Journal, 2017, 11(9): 1975-1987. doi: 10.1038/ismej.2017.62
    [11]
    Blaser M J. The microbiome revolution [J]. Journal of Clinical Investigation, 2014, 124(10): 4162-4165. doi: 10.1172/JCI78366
    [12]
    Nayak S K. Role of gastrointestinal microbiota in fish [J]. Aquaculture Research, 2010, 41(11): 1553-1573. doi: 10.1111/j.1365-2109.2010.02546.x
    [13]
    蔡斌斌. 白甲鱼肠道微生物多样性及其功能分析 [D]. 福州: 福建师范大学, 2017: 2

    Cai B B. Diversity and function analysis of the intestine microbes of Onychostoma sima [D]. Fuzhou: Fujian Normal University, 2017: 2.
    [14]
    Li J, Ni J, Li J, et al. Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits [J]. Journal of Applied Microbiology, 2014, 117(6): 1750-1760. doi: 10.1111/jam.12663
    [15]
    Ward N L, Steven B, Penn K, et al. Characterization of the intestinal microbiota of two Antarctic notothenioid fish species [J]. Extremophiles, 2009, 13(4): 679-685. doi: 10.1007/s00792-009-0252-4
    [16]
    郁二蒙, 张振男, 夏耘, 等. 摄食不同饵料的大口黑鲈肠道菌群分析 [J]. 水产学报, 2015, 39(1): 118-126.

    Yu E M, Zhang Z N, Xia Y, et al. Effects of different diets on intestinal microflora of largemouth bass (Micropterus salmoides) [J]. Journal of Fisheries of China, 2015, 39(1): 118-126. [
    [17]
    钟蕾, 向建国, 曾丹, 等. 饵料对鳡肠道微生物多样性的影响 [J]. 水生生物学报, 2016, 40(4): 830-835. doi: 10.7541/2016.107

    Zhong L, Xiang J G, Zeng D, et al. Effects of different diets on intestinal microbiota of Elopichthys bambusa [J]. Acta Hydrobiologica Sinica, 2016, 40(4): 830-835. [ doi: 10.7541/2016.107
    [18]
    Ley R E, Lozupone C A, Hamady M, et al. Worlds within worlds: evolution of the vertebrate gut microbiota [J]. Nature Reviews Microbiology, 2008, 6(10): 776-788. doi: 10.1038/nrmicro1978
    [19]
    Liu H, Guo X, Gooneratne R, et al. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels [J]. Scientific Reports, 2016(6): 24340. doi: 10.1038/srep24340
    [20]
    Pan Q, Shai O, Lee L J, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing [J]. Nature Genetics, 2008, 40(12): 1413-1415. doi: 10.1038/ng.259
    [21]
    Xu N, Tan G, Wang H, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure [J]. European Journal of Soil Biology, 2016(74): 1-8. doi: 10.1016/j.ejsobi.2016.02.004
    [22]
    Smith P, Willemsen D, Popkes M, et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish [J]. eLife, 2017(6): e27014. doi: 10.7554/eLife.27014
    [23]
    Pafčo B, Sharma A K, Petrželková K J, et al. Gut microbiome composition of wild western lowland gorillas is associated with individual age and sex factors [J]. American Journal of Physical Anthropology, 2019, 169(3): 575-585. doi: 10.1002/ajpa.23842
    [24]
    石萍, 鲁增辉, 游华建, 等. 饥饿及恢复喂食对日本医蛭肠道菌群多样性的影响 [J]. 水生生物学报, 2019, 43(3): 537-544. doi: 10.7541/2019.065

    Shi P, Lu Z H, You H J, et al. Effects of fasting and refeeding on Hirudo medicinalis intestinal microflora diversity [J]. Acta Hydrobiologica Sinica, 2019, 43(3): 537-544. [ doi: 10.7541/2019.065
    [25]
    Mekuchi M, Asakura T, Sakata K, et al. Intestinal microbiota composition is altered according to nutritional biorhythms in the leopard coral grouper (Plectropomus leopardus) [J]. PLoS One, 2018, 13(6): e0197256. doi: 10.1371/journal.pone.0197256
    [26]
    熊向英, 王贤丰, 彭银辉, 等. 健康和患病卵形鲳鲹肠道菌群结构的差异 [J]. 水产学报, 2019, 43(5): 1317-1325.

    Xiong X Y, Wang X F, Peng Y H, et al. Variance analysis of intestinal bacterial community between healthy and diseased Tranchinotus ovatus [J]. Journal of Fisheries of China, 2019, 43(5): 1317-1325. [
    [27]
    Sun Y, Zhang M, Chen C C, et al. Stress-induced corticotropin-releasing hormone-mediated NLRP6 inflammasome inhibition and transmissible enteritis in mice [J]. Gastroenterology, 2013, 144(7): 1478-1487. doi: 10.1053/j.gastro.2013.02.038
    [28]
    Michl S C, Ratten J M, Beyer M, et al. The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures [J]. PLoS One, 2017, 12(5): e0177735. doi: 10.1371/journal.pone.0177735
    [29]
    Dehler C E, Secombes C J, Martin S A M. Seawater transfer alters the intestinal microbiota profiles of Atlantic salmon (Salmo salar L.) [J]. Scientific Reports, 2017, 7(1): 13877. doi: 10.1038/s41598-017-13249-8
    [30]
    Zheng X, Yang R, Hu J, et al. The gut microbiota community and antioxidant enzymes activity of barramundi reared at seawater and freshwater [J]. Fish and Shellfish Immunology, 2019(89): 127-131. doi: 10.1016/j.fsi.2019.03.054
    [31]
    Ornelas-García P, Pajares S, Sosa-Jiménez V M, et al. Microbiome differences between river-dwelling and cave-adapted populations of the fish Astyanax mexicanus (De Filippi, 1853) [J]. PeerJ, 2018, 6(2): e5906.
    [32]
    Roeselers G, Mittge E K, Stephens W Z, et al. Evidence for a core gut microbiota in the zebrafish [J]. The ISME Journal, 2011, 5(10): 1595-1608. doi: 10.1038/ismej.2011.38
    [33]
    Gruninger R J, Sensen C W, McAllister T A, et al. Diversity of rumen bacteria in Canadian cervids [J]. PLoS One, 2014, 9(2): e89682. doi: 10.1371/journal.pone.0089682
    [34]
    沈佳斌, 张雪敬, 吴蔚, 等. 雉科鸟类肠道微生物的多样性与功能及其对食性的适应 [J]. 南京师大学报(自然科学版), 2016, 39(2): 90-95.

    Shen J B, Zhang X J, Wu W, et al. The gut microbes’ diversity and function of Phasianidae provide insights on the adaptation to their diet [J]. Journal of Nanjing Normal University (Natural Science Edition), 2016, 39(2): 90-95. [
    [35]
    Qin Z, Wang S, Guo D, et al. Comparative analysis of intestinal bacteria among venom secretion and non-secrection snakes [J]. Scientific Reports, 2019, 9(1): 6335. doi: 10.1038/s41598-019-42787-6
    [36]
    Briones-Roblero C I, Hernández-García J A, Gonzalez-Escobedo R, et al. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages [J]. PLoS One, 2017, 12(4): e0175470. doi: 10.1371/journal.pone.0175470
    [37]
    Kersters K, Vos P D, Gillis M, et al. Introduction to the Proteobacteria [M]. New York: Springer, 2006: 3-37
    [38]
    Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15718-15723. doi: 10.1073/pnas.0407076101
    [39]
    向毅, 巫贵成. 肠道微生态的基本概念 [J]. 现代医药卫生, 2019, 35(1): 5-7. doi: 10.3969/j.issn.1009-5519.2019.01.002

    Xiang Y, Wu G C. Some concepts of intestinal microbiota [J]. Modern Medicine Health, 2019, 35(1): 5-7. [ doi: 10.3969/j.issn.1009-5519.2019.01.002
    [40]
    Nuriel-Ohayon M, Neuman H, Koren O. Microbial changes during pregnancy, birth, and infancy [J]. Frontiers in Microbiology, 2016(7): 1031.
    [41]
    Pemberton J M, Kidd S P, Schmidt R. Secreted enzymes of Aeromonas [J]. FEMS Microbiology Letters, 1997, 152(1): 1-10. doi: 10.1111/j.1574-6968.1997.tb10401.x
    [42]
    陈翠珍. 爱德华氏菌及鱼类爱德华氏菌病(综述) [J]. 河北科技师范学院学报, 2004, 18(3): 70-76. doi: 10.3969/j.issn.1672-7983.2004.03.018

    Chen C Z. Edwardsiella and Edwardsiellasis of fish (Summary) [J]. Journal of Hebei Normal University of Science & Technology, 2004, 18(3): 70-76. [ doi: 10.3969/j.issn.1672-7983.2004.03.018
    [43]
    Brugman S, Nieuwenhuis E E. Mucosal control of the intestinal microbial community [J]. Journal of Molecular Medicine, 2010, 88(9): 881-888. doi: 10.1007/s00109-010-0639-9
    [44]
    Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes [J]? Nature Reviews Immunology, 2010, 10(10): 735-744. doi: 10.1038/nri2850
    [45]
    Viney M E, Riley E M. From Immunology to Eco-immunology: More Than a New Name [M]. Netherlands: Springer, 2014: 1-13
  • Related Articles

    [1]BIAN Guang-Ming, WANG Na-Ling, HU Ze-Hui, WANG Yue-Bin, HU Cheng-Shuo, CHAI Xue-Jun. A COMPARATIVE ANALYSIS ON THE GENETIC DIVERSITY OF TRICHIURUS LEPTURUS[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(2): 282-290. DOI: 10.7541/2019.035
    [2]TANG Fa-Hui, ZHAO Yuan-Jun. MOLECULAR PHYLOGENETIC EVIDENCES ON MOBILIDA BASED ON GENETIC DISTANCE AND GC CONTENT OF 18S rDNA USING BROAD TAXON SAMPLING[J]. ACTA HYDROBIOLOGICA SINICA, 2016, 40(2): 358-369. DOI: 10.7541/2016.48
    [3]WENG Zhao-hong, XIE Yang-jie, XIAO Zhi-qun, REN Peng, WANG Zhi-yong, GUI Jian-fang. Molecular identification OF THE taxonomic status of Sinonovacula rivularis and genus Sinonovacula using mitochondrial COⅠ and 16S rRNA fragments[J]. ACTA HYDROBIOLOGICA SINICA, 2013, 37(4): 684-690. DOI: 10.7541/2013.80
    [4]FAN Jia-Jia, BAI Jun-Jie, LI Sheng-Jie, REN Kun, YE Xing. ESTABLISHMENT OF DNA FINGERPRINTING AND ANALYSIS ON GENETIC STRUCTURE OF LARGEMOUTH BASS WITH MICROSATELLITE[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(4): 600-609. DOI: 10.3724/SP.J.1035.2012.00600
    [5]YANG Xing, YANG Jun-Feng, TANG Ming-Liang, PENG Zhi, ZHAO Xing-Gao, ZENG Ke-Wei, CAI Yan-Zhi, SHAO Xue-Ling, LIU Si-Yang. INTRASPECIFIC GENETIC POLYMORPHISMS OF SINIPERCA SCHERZERI STEINDACHER AND MOLECULAR IDENTIFICATION WITH SINIPERCA CHUATSI[J]. ACTA HYDROBIOLOGICA SINICA, 2007, 31(6): 891-895.
    [7]XIANG Xian-Ling, XI Yi-Long, HU Hao-Yuan. RAPD ANALYSIS OF GENETIC DIVERSITY OF DIFFERENT BRACHIONUS ANGULARIS STRAINS[J]. ACTA HYDROBIOLOGICA SINICA, 2006, 30(3): 363-366.
    [8]ZHANG Liang, HUANG Yan Yan, LIU Huan Zhang. THE SPECIES IDENTIFICATION OF MUSSELS IN QING LAN LAKE (JIANGXI PROVINCE)BASED ON SEQUENCE DIFFERENCES OF MITOCHONDIRIAL 16S rRNA GENE[J]. ACTA HYDROBIOLOGICA SINICA, 2004, 28(3): 294-298.
    [9]HUANG Yan-Yan, OUYANG Shan, WU Xiao-Ping, LIU Huan-Zhang. PHYLOGENY OF THE UNIONIDAE BASED ON PARTIAL MITOCHONDRIAL 16S rRNA SEQUENCES[J]. ACTA HYDROBIOLOGICA SINICA, 2003, 27(3): 258-263.
    [10]Wu Jihua, Liang Yanling, Sun Xida. NEWLY RECORDED SPECIES OF FREE-LIVING NEMATODES FROM CHINA (CHROMADORIDA,ENOPLIDA ARAEOLAIMIDA)[J]. ACTA HYDROBIOLOGICA SINICA, 1997, 21(4): 320-321.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return