Citation: | WANG Xu-Dong, NIE Chun-Hong, GAO Ze-Xia. RESEARCH PROGRESS ON MOLECULAR REGULATION MECHANISM AND GENETIC SELECTION OF INTERMUSCULAR BONES IN TELEOSTS[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(3): 680-691. DOI: 10.7541/2021.2020.092 |
[1] |
戈贤平. 我国大宗淡水鱼产业现状与发展方向 [J]. 渔业致富指南, 2013(6): 17-21.
Ge X P. Status and development trend of China’s bulk freshwater fish industry [J]. Fishery Guide to be Rich, 2013(6): 17-21.
|
[2] |
徐乐俊, 吕永辉, 于航盛, 等. 2019中国渔业统计年鉴 [R]. 北京: 中国农业出版社, 2019: 21-25.
Xu L J, Lü Y H, Yu S H, et al. China fishery statistical yearbook of 2019 [R]. Beijing: China Agriculture Press, 2019: 21-25.
|
[3] |
吕耀平, 鲍宝龙, 蒋燕, 等. 低等真骨鱼类肌间骨的比较分析 [J]. 水产学报, 2007, 31(5): 661-668.
Lü Y P, Bao B L, Jiang Y, et al. Comparative analysis of intermuscular bones in lower teleosts [J]. Journal of Fisheries of China, 2007, 31(5): 661-668.
|
[4] |
蒋燕, 杨琳琳, 鲍宝龙. 几种低等真骨鱼类的椎体小骨 [J]. 上海水产大学学报, 2008, 17(4): 493-496.
Jiang Y, Yang L L, Bao B L, et al. The epicentrals in several lower teleosts [J]. Journal of Shanghai Ocean Univeristy, 2008, 17(4): 493-496.
|
[5] |
秉志. 幼鲤大侧肌隔骨针的观察 [J]. 动物学报, 1962, 14(2): 175-179.
Bing Z. Observation of intermuscular bones of juvenile common carp muscle [J]. Acta Zoological Sinica, 1962, 14(2): 175-179.
|
[6] |
万世明, 易少奎, 仲嘉, 等. 团头鲂肌间骨发育的形态学观察 [J]. 水生生物学报, 2014, 38(6): 1143-1151.
Wan S M, Yi S K, Zhong J, et al. Developmental and morphological observation of intermuscular bones in Megalobrama amblycephala [J]. Acta Hydrobiologica Sinica, 2014, 38(6): 1143-1151.
|
[7] |
陈琳, 田雪, 米佳丽, 等. 黄河鲤肌间骨发育的形态学观察 [J]. 上海海洋大学学报, 2017, 26(4): 481-489.
Chen L, Tian X, Mi J L, et al. Developmental and morphological study of intermuscular bones in Cyprinus carpio haematopterus [J]. Journal of Shanghai Ocean University, 2017, 26(4): 481-489.
|
[8] |
Patterson C, Johnson G D. The intermuscular bones and ligaments of teleostean fishes [J]. Smithsonian Contribution to Zoology, 1995(559): 1-85.
|
[9] |
常永杰, 周佳佳, 张丽红, 等. 刀鲚肌间骨新类型的发现 [J]. 水生生物报, 2020, 41(1): 104-111.
Chang Y J, Zhou J J, Zhang L H, et al. The identification of new types of intermuscular bones in Coilia nasus [J]. Acta Hydrobiologica Sinica, 2020, 41(1): 104-111.
|
[10] |
Yang K, Jiang W, Wang X, et al. Evolution of the intermuscular bones in the Cyprinidae (Pisces) from a phylogenetic perspective [J]. Ecology and Evolution, 2019, 9(15): 8555-8566. doi: 10.1002/ece3.5374
|
[11] |
Fiedler I A K, Zeveleva S, Duarte A, et al. Microstructure, mineral and mechanical properties of teleost intermuscular bones [J]. Journal of Biomechanics, 2019(94): 59-66.
|
[12] |
聂春红, 陈祖萱, 戴彩娇, 等. 不同鱼类肌间骨的骨化模式研究 [J]. 水生生物学报, 2018, 42(1): 131-137.
Nie C H, Chen Z X, Dai C J, et al. Ossification patterns of intermuscular bones in different fish species [J]. Acta Hydrobiologica Sinica, 2018, 42(1): 131-137.
|
[13] |
姚文杰, 龚小玲, 吕耀平, 等. 日本鳗鲡肌间小骨的骨化过程 [J]. 上海海洋大学学报, 2014, 23(6): 810-813.
Yao W J, Gong X L, Lü Y P, et al. The ossificational process of the intermuscular bones in Anguilla japonica [J]. Journal of Shanghai Ocean University, 2014, 23(6): 810-813.
|
[14] |
Yao W J, Lü Y P, Gong X L, et al. Different ossification patterns of intermuscular bones in fish with different swimming modes [J]. Biology Open, 2015, 4(12): 1727-1732. doi: 10.1242/bio.012856
|
[15] |
何苹萍, 王卉, 韦嫔媛, 等. 禾花鲤与建鲤肌间骨miRNAs测序与分析比较 [J]. 水生生物学报, 2019, 43(4): 757-762.
He P P, Wang H, Wei P Y, et al. miRNAs sequencing and analysis of intermuscular bone between rice flower carp and jian carp [J]. Acta Hydrobiologica Sinica, 2019, 43(4): 757-762.
|
[16] |
Lü Y P, Yao W J, Chen J, et al. Newly identified gene muscle segment homeobox
|
[17] |
Nie C H, Wan S M, Tomljanovic T, et al. Comparative proteomics analysis of teleost intermuscular bones and ribs provides insight into their development [J]. BMC Genomics, 2017, 18(1): 147. doi: 10.1186/s12864-017-3530-z
|
[18] |
Nie C H, Wan S M, Liu Y L, et al. Development of teleost intermuscular bones undergoing intramembranous ossification based on histological-transcriptomic-proteomic data [J]. International Journal of Molecular Sciences, 2019, 20(19): 4698. doi: 10.3390/ijms20194698
|
[19] |
Wan S M, Yi S K, Zhong J, et al. Identification of MicroRNA for intermuscular bone development in blunt snout bream (Megalobrama amblycephala) [J]. International Journal of Molecular Sciences, 2015, 16(5): 10686-10703.
|
[20] |
Wan S M, Yi S K, Zhong J, et al. Dynamic mRNA and miRNA expression analysis in response to intermuscular bone development of blunt snout bream (Megalobrama amblycephala) [J]. Scientific Reports, 2016(6): 31050.
|
[21] |
Tang G P, Lü W H, Sun Z P, et al. Heritability and quantitative trait locus analyses of intermuscular bones in mirror carp (Cyprinus carpio) [J]. Aquaculture, 2020(515): 734601.
|
[22] |
Xiong X M, Robinson N A, Zhou J J, et al. Genetic parameter estimates for intermuscular bone in blunt snout bream (Megalobrama amblycephala) based on a microsatellite-based pedigree [J]. Aquaculture, 2019(502): 371-377.
|
[23] |
徐晓锋, 郑建波, 钱叶青, 等. 生长发育正常的无肌间刺草鱼突变体 [J]. 科学通报, 2015, 60(1): 52-57. doi: 10.1360/N972014-00637
Xu X F, Zheng J B, Qian Y Q, et al. Normally grown and developed intermuscular bone-deficient mutant in grass carp, Ctenopharyngodon idellus [J]. Chinese Science Bulletin, 2015, 60(1): 52-57. doi: 10.1360/N972014-00637
|
[24] |
Perazza C A, Hilsdorf A W S, Pinaffi F L V, et al. Lack of intermuscular bones in specimens of Colossoma macropomum: An unusual phenotype to be incorporated into genetic improvement programs [J]. Aquaculture, 2017(472): 57-60.
|
[25] |
安新玲, 韩金祥, 王世立. 骨形态发生蛋白的研究进展 [J]. 食品与药品, 2009, 11(11): 69-73.
An X L, Han J X, Wang S L. Progress on bone morphogenetic protein [J]. Food and Drug, 2009, 11(11): 69-73.
|
[26] |
车家驹, 金旭红, 戴涛. BMP在BMSC成骨、软骨分化中作用及机制的研究进展 [J]. 山东医药, 2020, 60(16): 99-101.
Che J J, Jin X H, Dai T. Research progress on the role and mechanism of BMP in BMSC osteogenesis and bone marrow differentiation [J]. Shandong Medical Journal, 2020, 60(16): 99-101.
|
[27] |
Zhang L, Luo Q, Shu Y, et al. Transcriptomic landscape regulated by the 14 types of bone morphogenetic proteins (BMPs) in lineage commitment and differentiation of mesenchymal stem cells (MSCs) [J]. Genes & Diseases, 2019, 6(3): 258-275.
|
[28] |
王建国, 吴晨晨, 吴殿君, 等. 骨形态发生蛋白与骨代谢 [J]. 中国畜牧兽医, 2010, 37(7): 30-32.
Wang J G, Wu C C, Wu D J, et al. Bone morphogenetic protein and bone metabolism [J]. China Animal Husbandry Veterinary Medicine, 2010, 37(7): 30-32.
|
[29] |
Jiang T, Xia C, Chen X, et al. Melatonin promotes the BMP9-induced osteogenic differentiation of mesenchymal stem cells by activating the AMPK/β-catenin signalling pathway [J]. Stem Cell Research & Therapy, 2019, 10(1): 408.
|
[30] |
Zhang W Z, Lan T, Guan N N, et al. Characterization and spatiotemporal expression analysis of nine bone morphogenetic protein family genes during intermuscular bone development in blunt snout bream [J]. Gene, 2018(642): 116-124.
|
[31] |
Yang G, Qin Z, Kou H, et al. A comparative genomic and transcriptional survey providing novel insights into bone morphogenetic protein 2 (bmp2) in fishes [J]. International Journal of Molecular Sciences, 2019, 20(24): 6137. doi: 10.3390/ijms20246137
|
[32] |
Su S, Dong Z. Comparative expression analyses of bone morphogenetic protein 4 (BMP4) expressions in muscles of tilapia and common carp indicate that BMP4 plays a role in the intermuscular bone distribution in a dose-dependent manner [J]. Gene Expression Patterns, 2018(27): 106-113.
|
[33] |
Britz R, Gemballa S. Homology of intermuscular bones in acanthomorph fishes [J]. American Museum Novitates, 1998(3241): 1-25.
|
[34] |
Nie C H, Hilsdorf A W S, Wan SM, et al. Understanding the development of intermuscular bones in teleost: status and future directions for aquaculture [J]. Reviews in Aquaculture, 2019, 12(2): 759-772.
|
[35] |
Hadi A, Nadav K B, Gadi P, et al. Molecular targets for tendon neoformation [J]. Journal of Clinical Investigation, 2008, 118(2): 439-444. doi: 10.1172/JCI33944
|
[36] |
Tomoya S, Sakai K, Maeda T, et al. Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice [J]. Journal of Biological Chemistry, 2018, 293(16): 5766-5780. doi: 10.1074/jbc.RA118.001987
|
[37] |
Shukunami C, Takimoto A, Nishizaki Y, et al. Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes [J]. Scientific Reports, 2018, 8(1): 3155. doi: 10.1038/s41598-018-21194-3
|
[38] |
Lin D, Alberton P, Caceres M D, et al. Loss of tenomodulin expression is a risk factor for age-related intervertebral disc degeneration [J]. Aging Cell, 2020, 19(5): e13091.
|
[39] |
Yin H, Caceres M D, Yan Z, et al. Tenomodulin regulates matrix remodeling of mouse tendon stem/progenitor cells in an ex vivo collagen I gel model [J]. Biochemical and Biophysical Research Communications, 2019, 512(4): 691-697. doi: 10.1016/j.bbrc.2019.03.063
|
[40] |
Nie C H, Wan S M, Chen Y L, et al. Loss of scleraxis leads to distinct reduction of mineralized intermuscular bone in zebrafish [OL]. Aquaculture and Fisheries, 2021(6): 169-177.
|
[41] |
陈宇龙, 张丽红, 周佳佳, 等. 团头鲂肌腱发育相关基因tnmd/xirp2a的克隆和表达 [J]. 华中农业大学学报, 2019, 38(2): 7-14.
Chen Y L, Zhang L H, Zhou J J, et al. Cloning and expression analysis of tnmd/xirp2a genes relating to tendon development in Megalobrama amblycephala [J]. Journal of Huazhong Agricultural University, 2019, 38(2): 7-14.
|
[42] |
MacDonald B T, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases [J]. Development Cell, 2009, 17(1): 9-26. doi: 10.1016/j.devcel.2009.06.016
|
[43] |
Wei Q, Wang B, Hu H, et al. Icaritin promotes the osteogenesis of bone marrow mesenchymal stem cells via the regulation of sclerostin expression [J]. International Journal of Molecular Medicine, 2020, 45(3): 816-824.
|
[44] |
Mcdonald M M, Morse A, Birke O, et al. Sclerostin antibody enhances bone formation in a rat model of distraction osteogenesis [J]. Journal of Orthopaedic Research, 2018, 36(4): 1106-1113.
|
[45] |
杨敏璇, 朱焯安, 陈嘉俊, 等. 鲫鱼肌间刺形成基因SOST的克隆表达研究 [J]. 仲恺农业工程学院学报, 2019, 32(2): 58-63.
Yang M X, Zhu Z A, Chen J J, et al. Cloning and prokaryotic expression of the SOST gene of Carassius auratus [J]. Journal of Zhongkai University of Agriculture and Engineering, 2019, 32(2): 58-63.
|
[46] |
房连聪. 淇河鲫肌间骨及其形成相关基因SOST的研究 [D]. 郑州: 河南师范大学, 2015: 29-37.
Fang L C. The intermuscular bones and the sclerostin gene (SOST) in Carassius auratus in Qihe River [D]. Zhengzhou: Henan Normal University, 2015: 29-37.
|
[47] |
王良炎, 田雪, 庞小磊, 等. 硬化蛋白基因在淇河鲫成鱼不同肌间骨相邻肌组织的表达差异分析 [J]. 中国生物化学与分子生物学报, 2016, 32(12): 1354-1359.
Wang L Y, Tian X, Pang X L, et al. Differentially expression of SOST gene in the muscle tissues located between different intermuscular bones in Qihe crucian carp (Carassius auratus) [J]. Chinese Journal of Biochemistry and Molecular Biology, 2016, 32(12): 1354-1359.
|
[48] |
田雪, 王良炎, 陈琳, 等. SOST基因在淇河鲫肌间骨骨化过程中的表达研究 [J]. 水产学报, 2016, 40(5): 673-680.
Tian X, Wang L Y, Chen L, et al. The mRNA and protein expression of gene SOST during ossification process of intermuscular bone in crucian carp (Carassius auratus) in Qihe River [J]. Journal of Fisheries of China, 2016, 40(5): 673-680.
|
[49] |
Bendall A J, Abate-Shen C. Roles for Msx and Dlx homeoproteins in vertebrate development [J]. Gene, 2000, 247(1-2): 17-31. doi: 10.1016/S0378-1119(00)00081-0
|
[50] |
Lee M S, Lowe G N, Strong D D, et al. TWIST, a basic helix-loop-helix transcription factor, can regulate the human osteogenic lineage [J]. Journal of Cellular Biochemistry, 2015, 75(4): 566-577.
|
[51] |
肖雄升, 李有柱. Twist基因的研究进展 [J]. 医学综述, 2009, 15(7): 1031-1034.
Xiao X S, Li Y Z. Progression of Twist gene [J]. Medical Recapitulate, 2009, 15(7): 1031-1034.
|
[52] |
Huang Y Y, Meng T, Wang S Z, et al. Twist1-and Twist2-haploinsufficiency results in reduced bone formation [J]. PLoS One, 2014, 9(6): e99331. doi: 10.1371/journal.pone.0099331
|
[53] |
陈洁, 吕耀平, 戴庆敏, 等. 唇(䱻)twist1和twist2 基因克隆及其在肌间刺骨化过程中的表达 [OL]. 水产学报. https://kns.cnki.net/kcms/detail/31.1283.S.20200616.1156.004.html.
Chen J, Lü Y P, Dai Q M, et al. Molecular characterization of two twist genes in barbel steed (Hemibarbus labeo) and their relationship with intermuscular bone development [OL]. Journal of Fisheries of China. https://kns.cnki.net/kcms/detail/31.1283.S.20200616.1156.004.html.
|
[54] |
Peng J X, Zeng D G, He P P, et al. mRNA and microRNA transcriptomics analyses in intermuscular bones of two carp species, rice flower carp (Cyprinus carpio var. Quanzhounensis) and Jian carp (Cyprinus carpio var. Jian) [J]. Comparative biochemistry and physiology. Part D, Genomics & Proteomics, 2019(30): 71-80.
|
[55] |
Liu H, Chen C H, Gao Z X, et al. The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet [J]. Gigascience, 2017, 6(7): 1-13.
|
[56] |
Chen J, Chen X, Huang X, et al. Genome-wide analysis of intermuscular bone development reveals changes of key genes expression and signaling pathways in blunt snout bream (Megalobrama amblycephala) [J]. Genomics, 2020, 113(1): 654-663. doi: 10.1016/j.ygeno.2020.09.062
|
[57] |
Nunes J R S, Pértille F, Andrade S C S, et al. Genome-wide association study reveals genes associated with the absence of intermuscular bones in tambaqui (Colossoma macropomum) [J]. Animal Genetics, 2020(51): 899-909. doi: 10.1111/age.13001
|
[58] |
Gjedrem T. Flesh quality improvement in fish through breeding [J]. Aquaculture International, 1997, 5(3): 197-206. doi: 10.1023/A:1014546816984
|
[59] |
张晓娟, 周莉, 桂建芳. 遗传育种生物技术创新与水产养殖绿色发展 [J]. 中国科学: 生命科学, 2019, 49(11): 1409-1429.
Zhang X J, Zhou L, Gui J F, et al. Biotechnological innovation in genetic breeding and sustainable green development in Chinese aquaculture [J]. Science China-life Sciences, 2019, 49(11): 1409-1429.
|
[60] |
Sengbusch R., Meske C. On the way to boneless carp [J]. Theoretical and Applied Genetics, 1967(37): 271-274.
|
[61] |
Moav R, Finkel A, Wohlfarth G. Variability of intermuscular bones, vertebrae, ribs, dorsal fin rays and skeletal disorders in the common carp [J]. Theoretical and Applied Genetics, 1975, 46(1): 33-43. doi: 10.1007/BF00264753
|
[62] |
Cao D C, Kuang Y Y, Zheng X H, et al. Comparative analysis of intermuscular bones in three strains of common carp [J]. Journal of Applied Ichthyology, 2015, 31(1): 32-36. doi: 10.1111/jai.12483
|
[63] |
唐刘秀, 许志强, 葛家春. DNA分子标记技术在水产动物遗传育种中的应用 [J]. 水产养殖, 2013, 34(10): 44-48.
Tang L X, Xu Z Q, Ge J C. Application of DNA molecular markers in genetics and breeding of aquatic animals [J]. Journal of Aquaculture, 2013, 34(10): 44-48.
|
[64] |
马吉敏, 匡友谊, 郑先虎, 等. 镜鲤(Cyprinus carpio)肌间刺数量微卫星标记筛选与相关性分析 [J]. 动物学研究, 2013, 34(4): 406-410.
Ma J M, Kuang Y Y, Zheng X H, et al. Screening and body correlation analysis of microsatellite markers related to intermuscular bone number in common carp (Cyprinus carpio) [J]. Zoological Research, 2013, 34(4): 406-410.
|
[65] |
Wan S M, Xiong X M, Tomljanovic T, et al. Identification and mapping of SNPs associated with number of intermuscular bone in blunt snout bream [J]. Aquaculture, 2019(507): 75-82.
|
[66] |
聂春红, 关柠楠, 陈文倩, 等. 鲂属鱼类杂交子代肌间骨的形态学比较 [J]. 动物学杂志, 2016, 51(2): 241-252.
Nie C H, Guan N N, Chen W Q, et al. Morphological comparison of intermuscular bones among hybrids of Megalobrama species [J]. Chinese Journal of Zoology, 2016, 51(2): 241-252.
|
[67] |
蒋文枰, 贾永义, 刘士力, 等. 鲌鲂F1、F2及其亲本肌间骨的比较分析 [J]. 水生生物学报, 2016, 40(2): 277-286.
Jiang W P, Jia Y Y, Liu S L, et al. Comparative analysis of intermuscular bones hybrid of F1, F2 of (C. alburnus) (♀) × (M. amblycephala) (♂) and its parents [J]. Acta Hydrobiologica Sinica, 2016, 40(2): 277-286.
|
[68] |
钟泽洲. 翘嘴鳊及其亲本肌间骨的比较分析 [D]. 长沙: 湖南师范大学, 2014: 12-23.
Zong Z Z. Comparative analysis of internuscular bones in hybird of (blunt snout bream×topmouth culter) (♀)×blunt snout bream (♂) and its parents [D]. Changsha: Hunan Normal University, 2014: 12-23.
|
[69] |
Guo H H, Zheng G D, Wu C B, et al. Comparative analysis of the growth performance and intermuscular bone traits in F1, hybrids of black bream (Megalobrama terminalis) (♀)×topmouth culter (Culter alburnus) (♂) [J]. Aquaculture, 2018(492): 15-23.
|
[70] |
Wu C, Huang X, Chen Q, et al. The formation of a new type of hybrid culter derived from a hybrid lineage of Megalobrama amblycephala (♀)×Culter alburnus (♂) [J]. Aquaculture, 2020(525): 735328.
|
[71] |
李志, 周莉, 王忠卫, 等. 异育银鲫A+系和F系肌间骨的比较分析 [J]. 水生生物学报, 2017, 41(4): 860-869.
Li Z, Zhou L, Wang W Z, et al. Comparative analysis of intermuscular bones between clone A+ and clone F strains of allogynogenetic gibel carp [J]. Acta Hydrobiologica Sinica, 2017, 41(4): 860-869.
|
[72] |
黎玲, 钟泽州, 曾鸣, 等. 不同倍性鱼肌间骨的比较分析 [J]. 中国科学: 生命科学, 2013, 43(3): 5-16.
Li L, Zhong Z Z, Zeng M, et al. Comparative analysis of intermuscular bones in fish of different ploidies [J]. Science China-life Sciences, 2013, 43(3): 5-16.
|
[73] |
关柠楠, 聂春红, 陈宇龙, 等. 团头鲂雌核发育群体的肌间骨形态学分析 [J]. 水产科学, 2017, 36(5): 596-600.
Guan N N, Nie C H, Chen Y L, et al. Morphological characteristics of intermuscular bones in gynogenetic population of bluntnose black bream (Megalobrama amblycephala) [J]. Fisheries Science, 2017, 36(5): 596-600.
|
[74] |
Zhong Z, Niu P, Wang M, et al. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp [J]. Scientific Reports, 2016, 6(1): 22953. doi: 10.1038/srep22953
|
[75] |
杨建, 佟广香, 郑先虎, 等. 肌间刺缺失突变对斑马鱼胚胎发育过程中肌肉发育的影响 [J]. 中国水产科学, 2019, 26(2): 296-303. doi: 10.3724/SP.J.1118.2019.18119
Yang J, Tong G X, Zheng X H, et al. Comparative analysis of embryonic muscle development in wildtype zebrafish and its intermuscular bone deficiency mutant [J]. Journal of Fishery Sciences of China, 2019, 26(2): 296-303. doi: 10.3724/SP.J.1118.2019.18119
|
[76] |
杨建, 佟广香, 郑先虎, 等. 肌间刺缺失对斑马鱼骨骼发育的影响 [J]. 水生生物学报, 2020, 44(3): 546-553.
Yang J, Tong G X, Zheng X H, et al. Comparative analysis of skeletal development between wildtype zebrafish and intermuscular bone-deficient mutants [J]. Acta Hydrobiologica Sinica, 2020, 44(3): 546-553.
|
1. |
程方方, 董自梅, 陈静, 詹会娜, 陈广文. 热休克蛋白(HSPs)基因家族在涡虫中的研究进展. 河南师范大学学报(自然科学版). 2016(02): 119-124 .
![]() |