WANG Xu-Dong, NIE Chun-Hong, GAO Ze-Xia. RESEARCH PROGRESS ON MOLECULAR REGULATION MECHANISM AND GENETIC SELECTION OF INTERMUSCULAR BONES IN TELEOSTS[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(3): 680-691. DOI: 10.7541/2021.2020.092
Citation: WANG Xu-Dong, NIE Chun-Hong, GAO Ze-Xia. RESEARCH PROGRESS ON MOLECULAR REGULATION MECHANISM AND GENETIC SELECTION OF INTERMUSCULAR BONES IN TELEOSTS[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(3): 680-691. DOI: 10.7541/2021.2020.092

RESEARCH PROGRESS ON MOLECULAR REGULATION MECHANISM AND GENETIC SELECTION OF INTERMUSCULAR BONES IN TELEOSTS

Funds: Supported by the National Natural Science Foundation of China (31872559); the National Key Research and Development Program (2018YFD0900102); Modern Agriculture Industry Technology System Construction Projects of China (CARS-46-08); Fundamental Research Funds for the Central Universities (2662018PY035)
  • Received Date: April 29, 2020
  • Rev Recd Date: October 17, 2020
  • Available Online: May 11, 2021
  • Published Date: May 14, 2021
  • Intermuscular bones (IBs) are small spicule-like bones existing in the muscle fillet of fish and ossified from tendons, which only occur in lower teleosts. Most of the aquaculture fish species in the world, especially cyprinid fishes, contain a certain amount of IBs, which consequently affects the market value and processing industry of these species. Therefore, understanding the molecular regulation mechanism and conducting the genetic selection of IBs are worthwhile and meaningful for the world aquaculture industry, especially for carp species. Since 1967, more and more studies began to focus on the types, morphology and number of IBs among different fish species. With the evolution of fish, the IBs morphology evolved from simple to complex and then degenerate simple again. The two different types of ossification pattern have been observed during IBs’ development, including ossification from posterior to the anterior regions, and from anterior to the posterior regions. Recently, with the development of high-throughput sequencing and molecular technology, a quite number of studies have been conducted and tried to uncover the molecular mechanisms of IBs development. The regulation functions of some genes, such as scxa, osterix, bmps, tnm, had been revealed. Among these genes, the scxa mutations based on Crispr/Cas9 system showed distinct reduction of mineralized IBs in zebrafish, osterix mutations in common carp had short length of IBs. These genes could be used as candidate genes to breed less or short IBs strains in other economic fish species with IBs. The omics data of IBs, including miRNA, mRNA, proteomics and genomics, have been established in several fish species, such as blunt snout bream, common carp, tambaqui, which would be useful to unveil the molecular regulation mechanisms of IBs development. As to the genetic selection of IBs, several technologies, such as selective breeding, hybridization, polyploid breeding, gynogenesis and gene editing, had been used to breed strains with less IBs number. The selective breeding studies had reported the moderate heritability values of IBs number in blunt snout bream and mirror carp, which indicate that it should be feasible to decrease the number of IBs through selective breeding. Some related SNPs and QTL with IBs number were also identified in these two species. The individuals totally losing IBs were identified in the grass carp gynogenetic population in China and in one tambaqui culture population in Brazil. These identified individuals offers the fantastic materials for understanding the genetic origin of this phenotype as well as founders to breed offspring without IBs. In the future, with the development of single cell transcriptomics and spatially resolved transcriptomics analysis, the molecular mechanism for tendon-derived stem cells differentiating into osteoblast in species with IBs could be clarified. Then the key genes could be screened out and their functions in IBs development can be clarified. Moreover, Genome wide association studies (GWAS) based on sequencing could be used to identify the genes/SNPs associated with IBs number and whole genome selection approach could be considered in some important species. In this review, we summarized all the related reports focusing on fish IBs’ developmental molecular mechanism and genetic breeding, and the future directions are also discussed, which could dedicate basic data for less-IB or no-IB strains breeding program.
  • [1]
    戈贤平. 我国大宗淡水鱼产业现状与发展方向 [J]. 渔业致富指南, 2013(6): 17-21.

    Ge X P. Status and development trend of China’s bulk freshwater fish industry [J]. Fishery Guide to be Rich, 2013(6): 17-21.
    [2]
    徐乐俊, 吕永辉, 于航盛, 等. 2019中国渔业统计年鉴 [R]. 北京: 中国农业出版社, 2019: 21-25.

    Xu L J, Lü Y H, Yu S H, et al. China fishery statistical yearbook of 2019 [R]. Beijing: China Agriculture Press, 2019: 21-25.
    [3]
    吕耀平, 鲍宝龙, 蒋燕, 等. 低等真骨鱼类肌间骨的比较分析 [J]. 水产学报, 2007, 31(5): 661-668.

    Lü Y P, Bao B L, Jiang Y, et al. Comparative analysis of intermuscular bones in lower teleosts [J]. Journal of Fisheries of China, 2007, 31(5): 661-668.
    [4]
    蒋燕, 杨琳琳, 鲍宝龙. 几种低等真骨鱼类的椎体小骨 [J]. 上海水产大学学报, 2008, 17(4): 493-496.

    Jiang Y, Yang L L, Bao B L, et al. The epicentrals in several lower teleosts [J]. Journal of Shanghai Ocean Univeristy, 2008, 17(4): 493-496.
    [5]
    秉志. 幼鲤大侧肌隔骨针的观察 [J]. 动物学报, 1962, 14(2): 175-179.

    Bing Z. Observation of intermuscular bones of juvenile common carp muscle [J]. Acta Zoological Sinica, 1962, 14(2): 175-179.
    [6]
    万世明, 易少奎, 仲嘉, 等. 团头鲂肌间骨发育的形态学观察 [J]. 水生生物学报, 2014, 38(6): 1143-1151.

    Wan S M, Yi S K, Zhong J, et al. Developmental and morphological observation of intermuscular bones in Megalobrama amblycephala [J]. Acta Hydrobiologica Sinica, 2014, 38(6): 1143-1151.
    [7]
    陈琳, 田雪, 米佳丽, 等. 黄河鲤肌间骨发育的形态学观察 [J]. 上海海洋大学学报, 2017, 26(4): 481-489.

    Chen L, Tian X, Mi J L, et al. Developmental and morphological study of intermuscular bones in Cyprinus carpio haematopterus [J]. Journal of Shanghai Ocean University, 2017, 26(4): 481-489.
    [8]
    Patterson C, Johnson G D. The intermuscular bones and ligaments of teleostean fishes [J]. Smithsonian Contribution to Zoology, 1995(559): 1-85.
    [9]
    常永杰, 周佳佳, 张丽红, 等. 刀鲚肌间骨新类型的发现 [J]. 水生生物报, 2020, 41(1): 104-111.

    Chang Y J, Zhou J J, Zhang L H, et al. The identification of new types of intermuscular bones in Coilia nasus [J]. Acta Hydrobiologica Sinica, 2020, 41(1): 104-111.
    [10]
    Yang K, Jiang W, Wang X, et al. Evolution of the intermuscular bones in the Cyprinidae (Pisces) from a phylogenetic perspective [J]. Ecology and Evolution, 2019, 9(15): 8555-8566. doi: 10.1002/ece3.5374
    [11]
    Fiedler I A K, Zeveleva S, Duarte A, et al. Microstructure, mineral and mechanical properties of teleost intermuscular bones [J]. Journal of Biomechanics, 2019(94): 59-66.
    [12]
    聂春红, 陈祖萱, 戴彩娇, 等. 不同鱼类肌间骨的骨化模式研究 [J]. 水生生物学报, 2018, 42(1): 131-137.

    Nie C H, Chen Z X, Dai C J, et al. Ossification patterns of intermuscular bones in different fish species [J]. Acta Hydrobiologica Sinica, 2018, 42(1): 131-137.
    [13]
    姚文杰, 龚小玲, 吕耀平, 等. 日本鳗鲡肌间小骨的骨化过程 [J]. 上海海洋大学学报, 2014, 23(6): 810-813.

    Yao W J, Gong X L, Lü Y P, et al. The ossificational process of the intermuscular bones in Anguilla japonica [J]. Journal of Shanghai Ocean University, 2014, 23(6): 810-813.
    [14]
    Yao W J, Lü Y P, Gong X L, et al. Different ossification patterns of intermuscular bones in fish with different swimming modes [J]. Biology Open, 2015, 4(12): 1727-1732. doi: 10.1242/bio.012856
    [15]
    何苹萍, 王卉, 韦嫔媛, 等. 禾花鲤与建鲤肌间骨miRNAs测序与分析比较 [J]. 水生生物学报, 2019, 43(4): 757-762.

    He P P, Wang H, Wei P Y, et al. miRNAs sequencing and analysis of intermuscular bone between rice flower carp and jian carp [J]. Acta Hydrobiologica Sinica, 2019, 43(4): 757-762.
    [16]
    Lü Y P, Yao W J, Chen J, et al. Newly identified gene muscle segment homeoboxC may play a role in intermuscular bone development of Hemibarbus labeo [J]. Genetics & Molecular Research, 2015, 14(3): 11324-11334.
    [17]
    Nie C H, Wan S M, Tomljanovic T, et al. Comparative proteomics analysis of teleost intermuscular bones and ribs provides insight into their development [J]. BMC Genomics, 2017, 18(1): 147. doi: 10.1186/s12864-017-3530-z
    [18]
    Nie C H, Wan S M, Liu Y L, et al. Development of teleost intermuscular bones undergoing intramembranous ossification based on histological-transcriptomic-proteomic data [J]. International Journal of Molecular Sciences, 2019, 20(19): 4698. doi: 10.3390/ijms20194698
    [19]
    Wan S M, Yi S K, Zhong J, et al. Identification of MicroRNA for intermuscular bone development in blunt snout bream (Megalobrama amblycephala) [J]. International Journal of Molecular Sciences, 2015, 16(5): 10686-10703.
    [20]
    Wan S M, Yi S K, Zhong J, et al. Dynamic mRNA and miRNA expression analysis in response to intermuscular bone development of blunt snout bream (Megalobrama amblycephala) [J]. Scientific Reports, 2016(6): 31050.
    [21]
    Tang G P, Lü W H, Sun Z P, et al. Heritability and quantitative trait locus analyses of intermuscular bones in mirror carp (Cyprinus carpio) [J]. Aquaculture, 2020(515): 734601.
    [22]
    Xiong X M, Robinson N A, Zhou J J, et al. Genetic parameter estimates for intermuscular bone in blunt snout bream (Megalobrama amblycephala) based on a microsatellite-based pedigree [J]. Aquaculture, 2019(502): 371-377.
    [23]
    徐晓锋, 郑建波, 钱叶青, 等. 生长发育正常的无肌间刺草鱼突变体 [J]. 科学通报, 2015, 60(1): 52-57. doi: 10.1360/N972014-00637

    Xu X F, Zheng J B, Qian Y Q, et al. Normally grown and developed intermuscular bone-deficient mutant in grass carp, Ctenopharyngodon idellus [J]. Chinese Science Bulletin, 2015, 60(1): 52-57. doi: 10.1360/N972014-00637
    [24]
    Perazza C A, Hilsdorf A W S, Pinaffi F L V, et al. Lack of intermuscular bones in specimens of Colossoma macropomum: An unusual phenotype to be incorporated into genetic improvement programs [J]. Aquaculture, 2017(472): 57-60.
    [25]
    安新玲, 韩金祥, 王世立. 骨形态发生蛋白的研究进展 [J]. 食品与药品, 2009, 11(11): 69-73.

    An X L, Han J X, Wang S L. Progress on bone morphogenetic protein [J]. Food and Drug, 2009, 11(11): 69-73.
    [26]
    车家驹, 金旭红, 戴涛. BMP在BMSC成骨、软骨分化中作用及机制的研究进展 [J]. 山东医药, 2020, 60(16): 99-101.

    Che J J, Jin X H, Dai T. Research progress on the role and mechanism of BMP in BMSC osteogenesis and bone marrow differentiation [J]. Shandong Medical Journal, 2020, 60(16): 99-101.
    [27]
    Zhang L, Luo Q, Shu Y, et al. Transcriptomic landscape regulated by the 14 types of bone morphogenetic proteins (BMPs) in lineage commitment and differentiation of mesenchymal stem cells (MSCs) [J]. Genes & Diseases, 2019, 6(3): 258-275.
    [28]
    王建国, 吴晨晨, 吴殿君, 等. 骨形态发生蛋白与骨代谢 [J]. 中国畜牧兽医, 2010, 37(7): 30-32.

    Wang J G, Wu C C, Wu D J, et al. Bone morphogenetic protein and bone metabolism [J]. China Animal Husbandry Veterinary Medicine, 2010, 37(7): 30-32.
    [29]
    Jiang T, Xia C, Chen X, et al. Melatonin promotes the BMP9-induced osteogenic differentiation of mesenchymal stem cells by activating the AMPK/β-catenin signalling pathway [J]. Stem Cell Research & Therapy, 2019, 10(1): 408.
    [30]
    Zhang W Z, Lan T, Guan N N, et al. Characterization and spatiotemporal expression analysis of nine bone morphogenetic protein family genes during intermuscular bone development in blunt snout bream [J]. Gene, 2018(642): 116-124.
    [31]
    Yang G, Qin Z, Kou H, et al. A comparative genomic and transcriptional survey providing novel insights into bone morphogenetic protein 2 (bmp2) in fishes [J]. International Journal of Molecular Sciences, 2019, 20(24): 6137. doi: 10.3390/ijms20246137
    [32]
    Su S, Dong Z. Comparative expression analyses of bone morphogenetic protein 4 (BMP4) expressions in muscles of tilapia and common carp indicate that BMP4 plays a role in the intermuscular bone distribution in a dose-dependent manner [J]. Gene Expression Patterns, 2018(27): 106-113.
    [33]
    Britz R, Gemballa S. Homology of intermuscular bones in acanthomorph fishes [J]. American Museum Novitates, 1998(3241): 1-25.
    [34]
    Nie C H, Hilsdorf A W S, Wan SM, et al. Understanding the development of intermuscular bones in teleost: status and future directions for aquaculture [J]. Reviews in Aquaculture, 2019, 12(2): 759-772.
    [35]
    Hadi A, Nadav K B, Gadi P, et al. Molecular targets for tendon neoformation [J]. Journal of Clinical Investigation, 2008, 118(2): 439-444. doi: 10.1172/JCI33944
    [36]
    Tomoya S, Sakai K, Maeda T, et al. Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice [J]. Journal of Biological Chemistry, 2018, 293(16): 5766-5780. doi: 10.1074/jbc.RA118.001987
    [37]
    Shukunami C, Takimoto A, Nishizaki Y, et al. Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes [J]. Scientific Reports, 2018, 8(1): 3155. doi: 10.1038/s41598-018-21194-3
    [38]
    Lin D, Alberton P, Caceres M D, et al. Loss of tenomodulin expression is a risk factor for age-related intervertebral disc degeneration [J]. Aging Cell, 2020, 19(5): e13091.
    [39]
    Yin H, Caceres M D, Yan Z, et al. Tenomodulin regulates matrix remodeling of mouse tendon stem/progenitor cells in an ex vivo collagen I gel model [J]. Biochemical and Biophysical Research Communications, 2019, 512(4): 691-697. doi: 10.1016/j.bbrc.2019.03.063
    [40]
    Nie C H, Wan S M, Chen Y L, et al. Loss of scleraxis leads to distinct reduction of mineralized intermuscular bone in zebrafish [OL]. Aquaculture and Fisheries, 2021(6): 169-177.
    [41]
    陈宇龙, 张丽红, 周佳佳, 等. 团头鲂肌腱发育相关基因tnmd/xirp2a的克隆和表达 [J]. 华中农业大学学报, 2019, 38(2): 7-14.

    Chen Y L, Zhang L H, Zhou J J, et al. Cloning and expression analysis of tnmd/xirp2a genes relating to tendon development in Megalobrama amblycephala [J]. Journal of Huazhong Agricultural University, 2019, 38(2): 7-14.
    [42]
    MacDonald B T, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases [J]. Development Cell, 2009, 17(1): 9-26. doi: 10.1016/j.devcel.2009.06.016
    [43]
    Wei Q, Wang B, Hu H, et al. Icaritin promotes the osteogenesis of bone marrow mesenchymal stem cells via the regulation of sclerostin expression [J]. International Journal of Molecular Medicine, 2020, 45(3): 816-824.
    [44]
    Mcdonald M M, Morse A, Birke O, et al. Sclerostin antibody enhances bone formation in a rat model of distraction osteogenesis [J]. Journal of Orthopaedic Research, 2018, 36(4): 1106-1113.
    [45]
    杨敏璇, 朱焯安, 陈嘉俊, 等. 鲫鱼肌间刺形成基因SOST的克隆表达研究 [J]. 仲恺农业工程学院学报, 2019, 32(2): 58-63.

    Yang M X, Zhu Z A, Chen J J, et al. Cloning and prokaryotic expression of the SOST gene of Carassius auratus [J]. Journal of Zhongkai University of Agriculture and Engineering, 2019, 32(2): 58-63.
    [46]
    房连聪. 淇河鲫肌间骨及其形成相关基因SOST的研究 [D]. 郑州: 河南师范大学, 2015: 29-37.

    Fang L C. The intermuscular bones and the sclerostin gene (SOST) in Carassius auratus in Qihe River [D]. Zhengzhou: Henan Normal University, 2015: 29-37.
    [47]
    王良炎, 田雪, 庞小磊, 等. 硬化蛋白基因在淇河鲫成鱼不同肌间骨相邻肌组织的表达差异分析 [J]. 中国生物化学与分子生物学报, 2016, 32(12): 1354-1359.

    Wang L Y, Tian X, Pang X L, et al. Differentially expression of SOST gene in the muscle tissues located between different intermuscular bones in Qihe crucian carp (Carassius auratus) [J]. Chinese Journal of Biochemistry and Molecular Biology, 2016, 32(12): 1354-1359.
    [48]
    田雪, 王良炎, 陈琳, 等. SOST基因在淇河鲫肌间骨骨化过程中的表达研究 [J]. 水产学报, 2016, 40(5): 673-680.

    Tian X, Wang L Y, Chen L, et al. The mRNA and protein expression of gene SOST during ossification process of intermuscular bone in crucian carp (Carassius auratus) in Qihe River [J]. Journal of Fisheries of China, 2016, 40(5): 673-680.
    [49]
    Bendall A J, Abate-Shen C. Roles for Msx and Dlx homeoproteins in vertebrate development [J]. Gene, 2000, 247(1-2): 17-31. doi: 10.1016/S0378-1119(00)00081-0
    [50]
    Lee M S, Lowe G N, Strong D D, et al. TWIST, a basic helix-loop-helix transcription factor, can regulate the human osteogenic lineage [J]. Journal of Cellular Biochemistry, 2015, 75(4): 566-577.
    [51]
    肖雄升, 李有柱. Twist基因的研究进展 [J]. 医学综述, 2009, 15(7): 1031-1034.

    Xiao X S, Li Y Z. Progression of Twist gene [J]. Medical Recapitulate, 2009, 15(7): 1031-1034.
    [52]
    Huang Y Y, Meng T, Wang S Z, et al. Twist1-and Twist2-haploinsufficiency results in reduced bone formation [J]. PLoS One, 2014, 9(6): e99331. doi: 10.1371/journal.pone.0099331
    [53]
    陈洁, 吕耀平, 戴庆敏, 等. 唇(䱻)twist1和twist2 基因克隆及其在肌间刺骨化过程中的表达 [OL]. 水产学报. https://kns.cnki.net/kcms/detail/31.1283.S.20200616.1156.004.html.

    Chen J, Lü Y P, Dai Q M, et al. Molecular characterization of two twist genes in barbel steed (Hemibarbus labeo) and their relationship with intermuscular bone development [OL]. Journal of Fisheries of China. https://kns.cnki.net/kcms/detail/31.1283.S.20200616.1156.004.html.
    [54]
    Peng J X, Zeng D G, He P P, et al. mRNA and microRNA transcriptomics analyses in intermuscular bones of two carp species, rice flower carp (Cyprinus carpio var. Quanzhounensis) and Jian carp (Cyprinus carpio var. Jian) [J]. Comparative biochemistry and physiology. Part D, Genomics & Proteomics, 2019(30): 71-80.
    [55]
    Liu H, Chen C H, Gao Z X, et al. The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet [J]. Gigascience, 2017, 6(7): 1-13.
    [56]
    Chen J, Chen X, Huang X, et al. Genome-wide analysis of intermuscular bone development reveals changes of key genes expression and signaling pathways in blunt snout bream (Megalobrama amblycephala) [J]. Genomics, 2020, 113(1): 654-663. doi: 10.1016/j.ygeno.2020.09.062
    [57]
    Nunes J R S, Pértille F, Andrade S C S, et al. Genome-wide association study reveals genes associated with the absence of intermuscular bones in tambaqui (Colossoma macropomum) [J]. Animal Genetics, 2020(51): 899-909. doi: 10.1111/age.13001
    [58]
    Gjedrem T. Flesh quality improvement in fish through breeding [J]. Aquaculture International, 1997, 5(3): 197-206. doi: 10.1023/A:1014546816984
    [59]
    张晓娟, 周莉, 桂建芳. 遗传育种生物技术创新与水产养殖绿色发展 [J]. 中国科学: 生命科学, 2019, 49(11): 1409-1429.

    Zhang X J, Zhou L, Gui J F, et al. Biotechnological innovation in genetic breeding and sustainable green development in Chinese aquaculture [J]. Science China-life Sciences, 2019, 49(11): 1409-1429.
    [60]
    Sengbusch R., Meske C. On the way to boneless carp [J]. Theoretical and Applied Genetics, 1967(37): 271-274.
    [61]
    Moav R, Finkel A, Wohlfarth G. Variability of intermuscular bones, vertebrae, ribs, dorsal fin rays and skeletal disorders in the common carp [J]. Theoretical and Applied Genetics, 1975, 46(1): 33-43. doi: 10.1007/BF00264753
    [62]
    Cao D C, Kuang Y Y, Zheng X H, et al. Comparative analysis of intermuscular bones in three strains of common carp [J]. Journal of Applied Ichthyology, 2015, 31(1): 32-36. doi: 10.1111/jai.12483
    [63]
    唐刘秀, 许志强, 葛家春. DNA分子标记技术在水产动物遗传育种中的应用 [J]. 水产养殖, 2013, 34(10): 44-48.

    Tang L X, Xu Z Q, Ge J C. Application of DNA molecular markers in genetics and breeding of aquatic animals [J]. Journal of Aquaculture, 2013, 34(10): 44-48.
    [64]
    马吉敏, 匡友谊, 郑先虎, 等. 镜鲤(Cyprinus carpio)肌间刺数量微卫星标记筛选与相关性分析 [J]. 动物学研究, 2013, 34(4): 406-410.

    Ma J M, Kuang Y Y, Zheng X H, et al. Screening and body correlation analysis of microsatellite markers related to intermuscular bone number in common carp (Cyprinus carpio) [J]. Zoological Research, 2013, 34(4): 406-410.
    [65]
    Wan S M, Xiong X M, Tomljanovic T, et al. Identification and mapping of SNPs associated with number of intermuscular bone in blunt snout bream [J]. Aquaculture, 2019(507): 75-82.
    [66]
    聂春红, 关柠楠, 陈文倩, 等. 鲂属鱼类杂交子代肌间骨的形态学比较 [J]. 动物学杂志, 2016, 51(2): 241-252.

    Nie C H, Guan N N, Chen W Q, et al. Morphological comparison of intermuscular bones among hybrids of Megalobrama species [J]. Chinese Journal of Zoology, 2016, 51(2): 241-252.
    [67]
    蒋文枰, 贾永义, 刘士力, 等. 鲌鲂F1、F2及其亲本肌间骨的比较分析 [J]. 水生生物学报, 2016, 40(2): 277-286.

    Jiang W P, Jia Y Y, Liu S L, et al. Comparative analysis of intermuscular bones hybrid of F1, F2 of (C. alburnus) (♀) × (M. amblycephala) (♂) and its parents [J]. Acta Hydrobiologica Sinica, 2016, 40(2): 277-286.
    [68]
    钟泽洲. 翘嘴鳊及其亲本肌间骨的比较分析 [D]. 长沙: 湖南师范大学, 2014: 12-23.

    Zong Z Z. Comparative analysis of internuscular bones in hybird of (blunt snout bream×topmouth culter) (♀)×blunt snout bream (♂) and its parents [D]. Changsha: Hunan Normal University, 2014: 12-23.
    [69]
    Guo H H, Zheng G D, Wu C B, et al. Comparative analysis of the growth performance and intermuscular bone traits in F1, hybrids of black bream (Megalobrama terminalis) (♀)×topmouth culter (Culter alburnus) (♂) [J]. Aquaculture, 2018(492): 15-23.
    [70]
    Wu C, Huang X, Chen Q, et al. The formation of a new type of hybrid culter derived from a hybrid lineage of Megalobrama amblycephala (♀)×Culter alburnus (♂) [J]. Aquaculture, 2020(525): 735328.
    [71]
    李志, 周莉, 王忠卫, 等. 异育银鲫A+系和F系肌间骨的比较分析 [J]. 水生生物学报, 2017, 41(4): 860-869.

    Li Z, Zhou L, Wang W Z, et al. Comparative analysis of intermuscular bones between clone A+ and clone F strains of allogynogenetic gibel carp [J]. Acta Hydrobiologica Sinica, 2017, 41(4): 860-869.
    [72]
    黎玲, 钟泽州, 曾鸣, 等. 不同倍性鱼肌间骨的比较分析 [J]. 中国科学: 生命科学, 2013, 43(3): 5-16.

    Li L, Zhong Z Z, Zeng M, et al. Comparative analysis of intermuscular bones in fish of different ploidies [J]. Science China-life Sciences, 2013, 43(3): 5-16.
    [73]
    关柠楠, 聂春红, 陈宇龙, 等. 团头鲂雌核发育群体的肌间骨形态学分析 [J]. 水产科学, 2017, 36(5): 596-600.

    Guan N N, Nie C H, Chen Y L, et al. Morphological characteristics of intermuscular bones in gynogenetic population of bluntnose black bream (Megalobrama amblycephala) [J]. Fisheries Science, 2017, 36(5): 596-600.
    [74]
    Zhong Z, Niu P, Wang M, et al. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp [J]. Scientific Reports, 2016, 6(1): 22953. doi: 10.1038/srep22953
    [75]
    杨建, 佟广香, 郑先虎, 等. 肌间刺缺失突变对斑马鱼胚胎发育过程中肌肉发育的影响 [J]. 中国水产科学, 2019, 26(2): 296-303. doi: 10.3724/SP.J.1118.2019.18119

    Yang J, Tong G X, Zheng X H, et al. Comparative analysis of embryonic muscle development in wildtype zebrafish and its intermuscular bone deficiency mutant [J]. Journal of Fishery Sciences of China, 2019, 26(2): 296-303. doi: 10.3724/SP.J.1118.2019.18119
    [76]
    杨建, 佟广香, 郑先虎, 等. 肌间刺缺失对斑马鱼骨骼发育的影响 [J]. 水生生物学报, 2020, 44(3): 546-553.

    Yang J, Tong G X, Zheng X H, et al. Comparative analysis of skeletal development between wildtype zebrafish and intermuscular bone-deficient mutants [J]. Acta Hydrobiologica Sinica, 2020, 44(3): 546-553.
  • Cited by

    Periodical cited type(1)

    1. 程方方, 董自梅, 陈静, 詹会娜, 陈广文. 热休克蛋白(HSPs)基因家族在涡虫中的研究进展. 河南师范大学学报(自然科学版). 2016(02): 119-124 .

    Other cited types(0)

Catalog

    Article views (3212) PDF downloads (197) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return