TAO Min, YUE Xing-Jian, LUO Jia-Lin, GUO Tao, WANG Yong-Ming, LIU Guo, LI Bin. SEASONAL SUCCESSION OF PHYTOPLANKTON FUNCTIONAL GROUPS AND ITS DRIVING FACTORS IN RESERVOIRS IN HILLY REGIONS OF SICHUAN PROVINCE[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(4): 826-837. DOI: 10.7541/2021.2020.236
Citation: TAO Min, YUE Xing-Jian, LUO Jia-Lin, GUO Tao, WANG Yong-Ming, LIU Guo, LI Bin. SEASONAL SUCCESSION OF PHYTOPLANKTON FUNCTIONAL GROUPS AND ITS DRIVING FACTORS IN RESERVOIRS IN HILLY REGIONS OF SICHUAN PROVINCE[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(4): 826-837. DOI: 10.7541/2021.2020.236

SEASONAL SUCCESSION OF PHYTOPLANKTON FUNCTIONAL GROUPS AND ITS DRIVING FACTORS IN RESERVOIRS IN HILLY REGIONS OF SICHUAN PROVINCE

Funds: Supported by Sichuan Science and Technology Program (2019YJ0498, 2019YJ0397); the Project of Education Department of Sichuan Province (18ZA0277)
  • Received Date: October 26, 2020
  • Rev Recd Date: February 13, 2021
  • Available Online: May 11, 2021
  • Published Date: July 14, 2021
  • The community structure and succession of phytoplankton are strongly related to water quality and affects the structure, function and utilization of aquatic ecosystem, especially in reservoirs. Seasonal annual surveys on 10 typical reservoirs in hilly regions of Sichuan Province were conducted from 2016 to 2017, with the aim to explore the annual changes, succession rules and influencing factors of phytoplankton community structure in this area. Phytoplankton functional classification and redundancy analysis were used. 24 phytoplankton functional groups were identified in total, which are dominated by the 6 groups of S1, TC, SN, S2, LO and J. Furthermore, the seasonal succession patterns for the dominant functional groups of phytoplankton in investigated reservoirs were identified as follows: S1+TC+SN+LO+S2 in summer, S1+S2+J+SN+X1+LO+X2 in autumn, S1+X2+C+X1+J+Y in winter and S1+SN+H1+J+X1+X2 in spring. The results showed that the phytoplankton is always dominated by filamentous cyanobacteria whose composition changed from season to season. The formation and breaking of reservoir stratification, changes of light intensity, grazing intensity and nutrient level in water in different seasons led to the fluctuation of phytoplankton functional groups. Redundancy analysis indicated that water temperature, total nitrogen, total phosphorus, ammonia nitrogen, Nitrate nitrogen, permanganate index and Secchi depth were the main environmental factors that influencing the functional groups. Although the filamentous cyanobacteria were seasonally different in terms of its dominant species, its abundance increased with the increase of nutrient level and water temperature. In order to ensure the safety of life and production in this area, it is recommended that the water quality of the reservoirs should be effectively managed and immediately repaired to prevent the explosive proliferation of filamentous cyanobacteria under the dual promotion of high nutritional level and global warming.
  • [1]
    Falkowski P G, Laws E A, Barber R T, et al. Phytoplankton and Their Role in Primary, New, and Export Production [M]. Berlin: Springer, 2003: 99-121.
    [2]
    Padisak J, Borics G, Grigorszky I, et al. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index [J]. Hydrobiologia, 2006, 553(1): 1-14. doi: 10.1007/s10750-005-1393-9
    [3]
    贺蓉, 蒋礼, 郑曙明, 等. 三峡库区甘井河水域牧场浮游植物群落结构及水质评价 [J]. 水生生物学报, 2015, 39(5): 902-909. doi: 10.7541/2015.119

    He R, Jiang L, Zheng S M, et al. The study of the community structure of the phytoplankton and the assessment of the water quality in the Ganjing River of the Three Gorge Reservior [J]. Acta Hydrobiologica Sinica, 2015, 39(5): 902-909. doi: 10.7541/2015.119
    [4]
    Huisman J, Matthijs H C, Visser P M. Harmful Cyanobacteria [M]. Berlin: Springer, 2005: 1-23.
    [5]
    杨文, 朱津永, 陆开宏, 等. 淡水浮游植物功能类群分类法的提出、发展及应用 [J]. 应用生态学报, 2014, 25(6): 1833-1840.

    Yang W, Zhu J Y, Lu K H, et al. The establishment, development and application of classification approach of freshwater phytoplankton based on the functional group: a review [J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1833-1840.
    [6]
    Sommer U. Plankton Ecology, Succession in Plankton Communities [M]. Berlin: Springer, 1989: 17-36.
    [7]
    Solbrig O T. Plant Traits and Adaptive Strategies: Their Role in Ecosystem Function [M]. Berlin: Springer, 1993: 97-116.
    [8]
    Reynolds C S, Huszar V, Kruk C, et al. Towards a functional classification of the freshwater phytoplankton [J]. Journal of Plankton Research, 2002, 24(5): 417-428. doi: 10.1093/plankt/24.5.417
    [9]
    Padisák J, Crossetti L O, Naselli-Flores L. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates [J]. Hydrobiologia, 2009, 621(1): 1-19. doi: 10.1007/s10750-008-9645-0
    [10]
    Kruk C, Mazzeo N, Lacerot G, et al. Classification schemes for phytoplankton: A local validation of a functional approach to the analysis of species temporal replacement [J]. Journal of Plankton Research, 2002, 24(9): 901-912. doi: 10.1093/plankt/24.9.901
    [11]
    Izaguirre I, Allende L, Escaray R, et al. Comparison of morpho-functional phytoplankton classifications in human impacted shallow lakes with different stable states [J]. Hydrobiologia, 2012, 698(1): 203-216. doi: 10.1007/s10750-012-1069-1
    [12]
    李哲, 方芳, 郭劲松, 等. 三峡小江(澎溪河)藻类功能分组及其季节演替特点 [J]. 环境科学, 2011, 32(2): 392-400.

    Li Z, Fang F, Guo J S, et al. Seasonal succession of Phytoplankton function groups in the Xiaojiang (Pengxi) River backwater area, Three Gorges Reservoir [J]. Environmental Science, 2011, 32(2): 392-400.
    [13]
    张怡, 胡韧, 肖利娟, 等. 南亚热带两座不同水文动态的水库浮游植物的功能类群演替比较 [J]. 生态环境学报, 2012, 21(1): 111-121.

    Zhang Y, Hu R, Xiao L J, et al. Comparative analysis of succession of the phytoplankton functional groups in two reservoirs with different hydrodynamics in Southern China [J]. Ecology and Environmental Sciences, 2012, 21(1): 111-121.
    [14]
    Stević F, Mihaljević M, Špoljarić D. Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations [J]. Hydrobiologia, 2013(709): 143-158.
    [15]
    Bovo-Scomparin V M, Train S, Rodrigues L C. Influence of reservoirs on phytoplankton dispersion and functional traits: A case study in the Upper Paran River, Brazil [J]. Hydrobiologia, 2013(702): 115-127.
    [16]
    张耀文, 李洪, 李嘉, 等. 西南山区典型河道型水库藻类功能群时空演替特征及其影响因素: 以紫坪铺水库为例 [J]. 环境科学, 2018, 39(6): 2680-2687.

    Zhang Y W, Li H, Li J, et al. Spatiotemporal succession characteristics of algal functional groups and its Impact factors for a typical channel-type reservoir in a Southwest Mountainous Area [J]. Environmental Science, 2018, 39(6): 2680-2687.
    [17]
    郑诚, 陆开宏, 徐镇, 等. 四明湖水库浮游植物功能类群的季节演替及其影响因子 [J]. 环境科学, 2018, 39(6): 2688-2697.

    Zheng C, Lu K H, Xu Z, et al. Seasonal succession of phytoplankton functional groups and their driving factors in the Siminghu reservoir [J]. Environmental Science, 2018, 39(6): 2688-2697.
    [18]
    范小晨, 代存芳, 陆欣鑫, 等. 金河湾城市湿地浮游植物功能类群演替及驱动因子 [J]. 生态学报, 2018, 38(16): 5726-5738.

    Fan X C, Dai C F, Lu X X, et al. Study on phytoplankton functional group succession and driving parameters in the Jinhewan Urban Wetland [J]. Acta Ecologica Sinica, 2018, 38(16): 5726-5738.
    [19]
    葛优, 周彦锋, 王晨赫, 等. 阳澄西湖浮游藻类功能群演替特征及其与环境因子的关系 [J]. 中国环境科学, 2019, 39(7): 3027-3039. doi: 10.3969/j.issn.1000-6923.2019.07.040

    Ge Y, Zhou Y F, Wang C H, et al. Succession patterns of phytoplankton functional groups in western area of Yangcheng Lake and their relationship with environmental factors [J]. China Environmental Science, 2019, 39(7): 3027-3039. doi: 10.3969/j.issn.1000-6923.2019.07.040
    [20]
    陈倩, 李秋华, 马欣洋, 等. FG、MFG和MBFG浮游植物功能群的比较: 以贵州三座水库为例 [J]. 环境科学, 2019, 40(9): 4061-4071.

    Chen Q, Li Q H, Ma X Y, et al. Comparison of functional groups of phytoplankton in FG, MFG and MBFG: Taking three reservoirs as an example in Guizhou Plateau [J]. Environmental Science, 2019, 40(9): 4061-4071.
    [21]
    魏志兵, 柴毅, 罗静波, 等. 长湖浮游植物优势种季节演替及生态位分析 [J]. 水生生物学报, 2020, 44(3): 612-621. doi: 10.7541/2020.075

    Wei Z B, Chai Y, Luo J B, et al. Seasonal succession and ecological niche analysis of the dominant species of phytoplankton in Changhu Lake [J]. Acta Hydrobiologica Sinica, 2020, 44(3): 612-621. doi: 10.7541/2020.075
    [22]
    罗怀良. 川中丘陵地区近46年来气候变化及旱涝动态特征 [J]. 四川师范大学学报: 自然科学版, 2011, 32(2): 273-278.

    Luo H L. Dynamic characteristics of drought and waterlogging and climate change in hilly area of central Sichuan during last 46 years [J]. Journal of Sichuan Normal University (Natural Science), 2011, 32(2): 273-278.
    [23]
    刘格辛, 吴孟李, 尹娟, 等. 西江调水对珠海市供水水库富营养化的影响及其管理对策 [J]. 生态科学, 2013, 32(4): 494-499.

    Liu G X, Wu M L, Yin J, et al. Influence of pumping water from Xijiang River on eutrophication of water supply reservoirs and its management strategy in Zhuhai City [J]. Ecological Science, 2013, 32(4): 494-499.
    [24]
    胡鸿钧, 魏印心. 中国淡水藻类——系统、分类及生态 [M]. 北京: 科学出版社, 2006: 23-900.

    Hu H J, Wei Y X. The Freshwater Algae of China: Systematics, Taxonomy and Ecology [M]. Beijing: Science Press, 2006: 23-900.
    [25]
    章宗涉, 黄祥飞. 淡水浮游生物研究方法 [M]. 北京: 科学出版社, 1991: 1-414.

    Zhang Z S, Huang X F. The Research Methods of Freshwater Plankton [M]. Beijing: Science Press, 1991: 1-414.
    [26]
    胡韧, 蓝于倩, 肖利娟, 等. 淡水浮游植物功能群的概念、划分方法和应用 [J]. 湖泊科学, 2015, 27(1): 11-23. doi: 10.18307/2015.0102

    Hu R, Lan Y Q, Xiao L J, et al. The concepts, classification and application of freshwater phytoplankton functional groups [J]. Journal of Lake Sciences, 2015, 27(1): 11-23. doi: 10.18307/2015.0102
    [27]
    国家环境保护总局, 水和废水监测分析方法编委会. 水和废水监测分析方法(第四版) [M]. 北京: 中国环境科学出版社. 2002: 88-284.

    State Environmental Protection Administration, the Monitor and Analysis Methods of Water and Wastewater Editorial Committee. The Monitor and Analysis Methods of Water and Wastewater [M]. Beijing: Chinese Environmental Science Press, 2002: 88-284.
    [28]
    Bellinger E G, Sigee D C. Freshwater Algae: Identification, Enumeration and Use as Bioindicators. 2nd ed [M]. Hoboken, NJ: Wiley-Blackwell, 2015: 11-56.
    [29]
    胡俊, 龚成, 夏纬, 等. 天鹅洲长江段浮游植物群落季节演替及环境因子研究 [J]. 海洋与湖沼, 2018, 49(1): 70-77.

    Hu J, Gong C, Xia W, et al. Study on phytoplankton community structure and its relationship with environmental factors in Tian’e section Changjiang River [J]. Oceanologia et Limnologia Sinica, 2018, 49(1): 70-77.
    [30]
    马沛明, 施练东, 张俊芳, 等. 浙江汤浦水库浮游植物季节演替及其影响因子分析 [J]. 环境科学, 2016, 37(12): 4560-4569.

    Ma P M, Shi L D, Zhang J F, et al. Succession of phytoplankton assemblages and its influencing factors in Tangpu Reservoir, Zhejiang Province [J]. Environmental Science, 2016, 37(12): 4560-4569.
    [31]
    刘足根, 张柱, 张萌, 等. 赣江流域浮游植物群落结构与功能类群划分 [J]. 长江流域资源与环境, 2012, 21(3): 375-384.

    Liu Z G, Zhang Z, Zhang M, et al. Classification of functional groups and community structure of phytoplankton in the Ganjiang River [J]. Resources and Environment in the Yangtze Basin, 2012, 21(3): 375-384.
    [32]
    詹雷. 四川盆中丘陵区休闲农业园区规划研究 [D]. 成都: 四川农业大学, 2016: 21-25.

    Zhan L. Study on leisure agriculture garden planning in central Sichuan hilly area [D]. Chengdu: Sichuan Agricultural University, 2016: 21-25.
    [33]
    苏玉萍. 筑坝河流营养特征研究——以福建省敖江山仔大坝河段为例 [D]. 福州: 福建师范大学, 2006: 14-22.

    Su Y P. Study on the nutrition character of the river with dam-A case study on the reach of Shanzi Dam of Aojiang watershed in Fujian Province [D]. Fuzhou: Fujian Normal University, 2006: 14-22.
    [34]
    王雨春, 朱俊, 马梅, 等. 西南峡谷型水库的季节性分层与水质的突发性恶化 [J]. 湖泊科学, 2005, 17(1): 54-60. doi: 10.3321/j.issn:1003-5427.2005.01.009

    Wang Y C, Zhu J, Ma M, et al. Thermal stratification and paroxysmal deterioration of water quality in a canyon-reservoir, Southwestern China [J]. Journal of Lake Sciences, 2005, 17(1): 54-60. doi: 10.3321/j.issn:1003-5427.2005.01.009
    [35]
    段扬. 基于EFDC的丹江口水库水环境数值模拟分析 [D]. 北京: 中国地质大学, 2014: 54-59.

    Duan Y. Water environment dynamics simulation technology research base on EFDC-Danjiangkou Reservoir as an example [D]. Beijing: China University of Geosciences, 2014: 54-59.
    [36]
    王耀耀, 徐涛, 崔玉洁, 等. 神农溪水体季节热分层特征及其对水华影响 [J]. 水生态学杂志, 2020, 41(4): 19-26.

    Wang Y Y, Xu T, Cui Y J, et al. Seasonal thermal stratification in Shennong Bay and its effect on algae blooms [J]. Journal of Hydroecology, 2020, 41(4): 19-26.
    [37]
    沈海维. 大亚湾表层沉积物中氮和磷的生物可利用性研究 [D]. 福建: 厦门大学, 2002: 1-99.

    Shen H W. The bioavailability of nitrogen and phosphorus in surface sediment in Daya Bay [D]. Fujian: Xiamen University, 2002: 1-99.
    [38]
    刘婷. 松塔水库水环境控制与保护技术研究 [D]. 太原: 太原理工大学, 2014: 1-108.

    Liu T. Research of water environment control and protection technology of Songta Reservoir [D]. Taiyuan: Taiyuan University of Technology, 2014: 1-108.
    [39]
    周涛. 氮在太湖水华形成与维持中的作用 [D]. 南京: 南京大学, 2013: 13-26.

    Zhou T. The role of nitrogen in bloom formation and maintenance of Lake Taihu [D]. Nanjing: Nanjing University, 2013: 13-26.
    [40]
    叶琳琳, 吴晓东, 刘波, 等. 太湖西北湖区浮游植物和无机, 有机氮的时空分布特征 [J]. 湖泊科学, 2017, 29(4): 859-869. doi: 10.18307/2017.0409

    Ye L L, Wu X D, Liu B, et al. Temporal and spatial distributions of phytoplankton and inorganic and organic nitrogen in northwest region of Lake Taihu [J]. Journal of Lake Sciences, 2017, 29(4): 859-869. doi: 10.18307/2017.0409
    [41]
    Kappers F I. On population dynamics of the cyanobacterium Microcystis aeroginosa [D]. Amsterdam: University of Amsterdam, 1984: 23-36.
    [42]
    王洪铸, 王海军, 李艳, 等. 湖泊富营养化治理: 集中控磷, 或氮磷皆控 [J]. 水生生物学报, 2020, 44(5): 938-960. doi: 10.7541/2020.111

    Wang H Z, Wang H J, Li Y, et al. The control of lake eutrophication: focusing on phosphorus abatement, or reducing both phosphorus and nitrogen [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 938-960. doi: 10.7541/2020.111

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return