XU Wen-Xin, ZHU Qin, ZHU Mei, JI Chun-Li, ZHANG Chun-Hui, QIN Song, LI Run-Zhi, CUI Hong-Li. ULTRAVIOLET-B RADIATION ENHANCES THE GROWTH AND ASTAXANTHIN PRODUCTION IN HAEMATOCOCCUS PLUVIALIS[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(6): 1281-1290. DOI: 10.7541/2021.2021.106
Citation: XU Wen-Xin, ZHU Qin, ZHU Mei, JI Chun-Li, ZHANG Chun-Hui, QIN Song, LI Run-Zhi, CUI Hong-Li. ULTRAVIOLET-B RADIATION ENHANCES THE GROWTH AND ASTAXANTHIN PRODUCTION IN HAEMATOCOCCUS PLUVIALIS[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(6): 1281-1290. DOI: 10.7541/2021.2021.106

ULTRAVIOLET-B RADIATION ENHANCES THE GROWTH AND ASTAXANTHIN PRODUCTION IN HAEMATOCOCCUS PLUVIALIS

Funds: Supported by the National Natural Science Foundation of China (31902394 and 41876188); Key Research and Development (R & D) Planning Project of Shanxi Province (201803D31063); Applying Basic Research Planning Project of Shanxi Province (201801D221250); Science and Technology Innovation Planning Project of Shanxi Agricultural University (2018YJ16); Outstanding Doctor to Work in Shanxi Province Research Project (SXYBKY2019036); Specialized Scientific Project of Shanxi Agricultural Valley Construction (SXNGJSKYZX201906); Key Research and Development (R & D) Planning Project of Jinzhong City (Y192012)
  • Received Date: May 25, 2021
  • Rev Recd Date: August 31, 2021
  • Available Online: September 09, 2021
  • Published Date: November 14, 2021
  • Haematococcus pluvialis is recognized as the ideal astaxanthin producer since high levels of astaxanthin can be accumulated in its cells under stress conditions. Although appropriate amount of ultraviolet-B (UV-B) can effectively induce astaxanthin biosynthesis, it remains to be elucidated whether the specific light signal perception and transduction mechanisms regulate astaxanthin accumulation in this alga. The present study was conducted to investigate the effects of different intensity of UV-B on the growth, photosynthesis and production of astaxanthin of H. pluvialis under six cultivation conditions (100-500 lux of UV-B was supplemented under LED light culture conditions). A series of physiological and biochemical parameters were examined under these six UV-B treatments designed as CK, U100, U200, U300, U400 and U500, respectively. The results revealed that UV-B radiation decreased the cell density, maximal quantum yield of PSⅡ (Fv/Fm), non-photochemical quenching parameter (NPQ) and chlorophyll (Chl. a and Chl. b) content in H. pluvialis. On the contrary, the astaxanthin content were enhanced with the increase of UV-B radiation intensity (100-400 lx). Compared with the control algal cells without UV-B treatment, astaxanthin content increased by 35.68% and 56.23% in the algal cells treated by 36h and 72h of high-intensity UV-B radiation (U400), with the level up to 5.82 and 7.06 mg/L. Expression analysis by qRT-PCR demonstrated that both 200 and 400 lx UV-B treatments significantly upregulated transcriptional expression of the four carotenoid biosynthesis-related genes (IPI, PSY, BCH and BKT) in H. pluvialis despite their expression profiles were different. UV-B radiation also upregulated the expression of UVR8 and the downstream genes COP1, SPA1, HYH and HY5 which are the core elements in UV-B signal transduction pathway. These findings indicated that the UV-B light signal transduction pathway may function importantly in the regulation of astaxanthin biosynthesis pathway, providing a scientific basis for optimizing culture system to increase astaxanthin accumulation in H. pluvialis by UV-B auxiliary light source. The present data also lay the foundation for further understanding the transcriptional regulation mechanisms of astaxanthin accumulation in this special agal under stress conditions, particularly in response to UV-B radiation.
  • [1]
    李晓一, 詹亚光, 娄晓瑞, 等. 白桦BpUVR8基因的序列与表达模式分析 [J]. 植物生理学报, 2016, 52(5): 685-692.

    Li X Y, Zhan Y G, Lou X R, et al. The sequence and expression analysis of BpUVR8 gene in birch [J]. Plant Physiology Journal Plant Physiology, 2016, 52(5): 685-692.
    [2]
    任慧, 黄烯. 紫外光B波段光信号调控植物生长发育的研究进展 [J]. 厦门大学学报(自然科学版), 2021, 60(2): 327-338.

    Ren H, Huang X. Research progress in the regulation of plant growth and development by ultraviolet-B light [J]. Journal of Xiamen University (Natural Science), 2021, 60(2): 327-338.
    [3]
    Wargent, J J, Gegas V C, Jenkins G I, et al. UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation [J]. New Phytologist, 2009, 183(2): 315-326. doi: 10.1111/j.1469-8137.2009.02855.x
    [4]
    Fasano, R, Gonzalez N, Tosco A, et al. Role of Arabidopsis UV resistance locus 8 in plant growth reduction under osmotic stress and low levels of UV-B [J]. Molecular Plant, 2014, 7(5): 773-791. doi: 10.1093/mp/ssu002
    [5]
    杨盼宇. 拟南芥紫外光受体UVR8的功能研究 [D]. 长沙: 湖南师范大学, 2016: 36-41.

    Yang P Y. The functional analysis of Arabidopsis UV-B photoreceptor UVR8 [D]. Changsha: Hunan Normal University, 2016: 36-41
    [6]
    蒋霞敏, 翟兴文, 王丽, 等. 雨生红球藻对紫外辐射的生理适应及超微结构变化 [J]. 水产学报, 2003, 27(2): 105-112.

    Jiang X M, Zhai X W, Wang L, et al. Physiological adaptation and ultrastructure change of Haematococcus pluvialis exposed to ultraviolet radiation [J]. Journal of Fishing of China, 2003, 27(2): 105-112.
    [7]
    Wang Q, Zuo Z, Wang X, et al. Photoactivation and inactivation of Arabidopsis cryptochrome 2 [J]. Science, 2016, 354(6310): 343-347. doi: 10.1126/science.aaf9030
    [8]
    Yin R H. Ulm R How plants cope with UV-B: from perception to response [J]. Current Opinion in Plant Biology, 2017(37): 42-48.
    [9]
    肖媛, 王高鸿, 刘永定. UV-B辐射对雨生红球藻光合特性和虾青素含量的影响及其响应 [J]. 水生生物学报, 2010, 34(6): 1077-1082.

    Xiao Y, Wang G H, Liu Y D. UV-B effects on the photosynthetic features and astaxanthin accumulation of Haematococcus pluvialis and its responses [J]. Acta Hydrobiologica Sinica, 2010, 34(6): 1077-1082.
    [10]
    Christie J M, Arvai A S, Katherine J, et al. Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges [J]. Science, 2012(335): 1492-1496.
    [11]
    Wu D, Hu Q, Yan Z, et al. Structural basis of ultraviolet-B perception by UVR8 [J]. Nature, 2012, 484(7393): 214-219. doi: 10.1038/nature10931
    [12]
    Morales L O, Brosche M, Vainonen J, et al. Multiple roles for UV resistance locus 8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation [J]. Plant Physiology, 2013, 161(2): 744-759. doi: 10.1104/pp.112.211375
    [13]
    Al-Sady B, Kikis E A, Monte E, et al. Mechanistic duality of transcription factor function in phytochrome signaling [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008(105): 2232-2237.
    [14]
    Park E, Kim Y, Choi G. Phytochrome B requires PIF degradation and sequestration to induce light responses across a wide range of light conditions [J]. The Plant Cell, 2018, 30(6): 1277-1292. doi: 10.1105/tpc.17.00913
    [15]
    Yu Y, Liu H T. Coordinated shoot and root responses to light signaling in Arabidopsis [J]. Plant Communications, 2020, 1(2): 10026.
    [16]
    张宏江, 杭伟, 马浩天, 等. 雨生红球藻 UVR8 的基因克隆和生物信息学分析 [J]. 西南农业学报, 2019, 32(9): 2025-2032.

    Zhang H J, Hang W, Ma H T, et al. Gene cloning and bioinformatics analysis of a novel ultraviolet-B photoreceptor UV resistance locus 8 (UVR8) from the green alga Haematococcus pluvialis [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(9): 2025-2032.
    [17]
    Rizzini L, Favory J J, Cloix C, et al. Perception of UV-B by the Arabidopsis UVR8 protein [J]. Science, 2011, 332(6025): 103-106. doi: 10.1126/science.1200660
    [18]
    Oravecz A, Baumann A, Z Mate, et al. Constitutively photomorphogenic1 is required for the UV-B response in Arabidopsis [J]. Plant Cell, 2006, 18(8): 1975-1990. doi: 10.1105/tpc.105.040097
    [19]
    Lau O S, Deng X W. The photomorphogenic repressors COP1 and DET1: 20 years later [J]. Trends in Plant Science, 2012, 17(10): 584-593. doi: 10.1016/j.tplants.2012.05.004
    [20]
    Lin R C, Wang H Y. Targeting proteins for degradation by Arabidopsis COP1: teamwork is what matters [J]. Journal of Integrative Plant Biology, 2007, 49(1): 35-42. doi: 10.1111/j.1744-7909.2006.00414.x
    [21]
    李合生. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社, 2000: 167-169.

    Li H S. Principles and Techniques of Plant Physiological Biochemical Experiment [M]. Beijing: Higher Education Press, 2000: 167-169
    [22]
    Boussiba S, Vonshak A. Astaxanthin accumulation in the green alga Haematococcus pluvialis [J]. Plant and Cell Physiology, 1991, 32(10): 77-82.
    [23]
    Gao Z Q, Meng C X, Zhang X W, et al. Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis [J]. Enzyme and Microbial Technology, 2012, 51(4): 225-230. doi: 10.1016/j.enzmictec.2012.07.001
    [24]
    崔红利, 许文鑫, 崔玉琳, 等. 光诱导雨生红球藻虾青素积累的信号通路转录组分析 [J]. 生物工程学报, 2020, 37(7): 1-17.

    Cui H L, Xu W X, Cui Y L, et al. Transcriptome analysis of signal transduction pathway involved in light inducing astaxanthin accumulation in Haematococcus pluvialis [J]. Chinese Journal of Biotechnology, 2020, 37(7): 1-17.
    [25]
    张春辉. 促进雨生红球藻不动细胞累积虾青素的代谢规律研究 [D]. 青岛: 中国科学院海洋研究所, 2019: 27-34.

    Zhang C H. Study on the metabolism regulation of enhancing astaxanthin accumulation in Haematococcus pluvialis [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2019: 27-34.
    [26]
    Han D X, Wang J F, Sommerfeld M, et al. Susceptibility and protective mechanisms of motile and non motile cells of Haematococcus pluvialis (Chlorophyceae) to photooxidative stress [J]. Journal of Phycology, 2012, 483(3): 693-705.
    [27]
    Li Y T, Sommerfeld M, Chen F, et al. Consumption of oxygen by astaxanthin biosynthesis: A protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae) [J]. Journal of Plant Physiology, 2008, 165(17): 1783-1797. doi: 10.1016/j.jplph.2007.12.007
    [28]
    李尚, 陶益, 刀国华, 等. 紫外线对再生水中斜生栅藻的生长抑制效果 [J]. 环境工程, 2020, 38(10): 97-102, 113.

    Li S, Tao Y, Dao G H, et al. Growth suppression effect of UV-C irradiation on Scenedesmus obliquus in reclaimed water [J]. Environmental Engineering, 2020, 38(10): 97-102, 113.
    [29]
    王宝贝. 雨生红球藻的光保护机制及脂肪酸与虾青素合成的相互关系 [D]. 厦门: 厦门大学, 2014: 67-71.

    Wang B B. Photoprotection mechanisms and crosstalk between the biosynthesis of fatty acids and astaxanthin in Haematococcus pluvialis [D]. Xiamen: Xiamen University, 2014: 67-71.
    [30]
    Zhu C, Chen J, Liu J H, et al. Transcriptomic and metabolic analysis of an astaxanthin hyperproducing Haematococcus pluvialis mutant obtained by low-temperature plasma (LTP) mutagenesis under high light irradiation [J]. Algal Research, 2020(45): 101746. doi: 10.1016/j.algal.2019.101746
    [31]
    Lee C, Choi Y E, Yun Y S. Corrigendum to “A Strategy for promoting astaxanthin accumulation in Haematococcus pluvialis by 1-aminocyclopropane-1-carboxylic acid application” [J]. Journal of Biotechnology, 2016(236): 120-127.
    [32]
    Fernández M B, Tossi V, Lamattina L, et al. A comprehensive phylogeny reveals functional conservation of the UV-B photoreceptor UVR8 from green algae to higher plants [J]. Frontiers in Plant Science, 2016(7): 1698.
    [33]
    Huang X, Ouyang X, Yang P, et al. Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16669-16674. doi: 10.1073/pnas.1316622110
    [34]
    Tilbrook K, Dubois M, Crocco C D, et al. UV-B perception and acclimation in Chlamydomonas reinhardtii [J]. Plant Cell, 2016, 28(4): 966-983. doi: 10.1105/tpc.15.00287

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return