Citation: | XU Wen-Xin, ZHU Qin, ZHU Mei, JI Chun-Li, ZHANG Chun-Hui, QIN Song, LI Run-Zhi, CUI Hong-Li. ULTRAVIOLET-B RADIATION ENHANCES THE GROWTH AND ASTAXANTHIN PRODUCTION IN HAEMATOCOCCUS PLUVIALIS[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(6): 1281-1290. DOI: 10.7541/2021.2021.106 |
[1] |
李晓一, 詹亚光, 娄晓瑞, 等. 白桦BpUVR8基因的序列与表达模式分析 [J]. 植物生理学报, 2016, 52(5): 685-692.
Li X Y, Zhan Y G, Lou X R, et al. The sequence and expression analysis of BpUVR8 gene in birch [J]. Plant Physiology Journal Plant Physiology, 2016, 52(5): 685-692.
|
[2] |
任慧, 黄烯. 紫外光B波段光信号调控植物生长发育的研究进展 [J]. 厦门大学学报(自然科学版), 2021, 60(2): 327-338.
Ren H, Huang X. Research progress in the regulation of plant growth and development by ultraviolet-B light [J]. Journal of Xiamen University (
|
[3] |
Wargent, J J, Gegas V C, Jenkins G I, et al. UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation [J]. New Phytologist, 2009, 183(2): 315-326. doi: 10.1111/j.1469-8137.2009.02855.x
|
[4] |
Fasano, R, Gonzalez N, Tosco A, et al. Role of Arabidopsis UV resistance locus 8 in plant growth reduction under osmotic stress and low levels of UV-B [J]. Molecular Plant, 2014, 7(5): 773-791. doi: 10.1093/mp/ssu002
|
[5] |
杨盼宇. 拟南芥紫外光受体UVR8的功能研究 [D]. 长沙: 湖南师范大学, 2016: 36-41.
Yang P Y. The functional analysis of Arabidopsis UV-B photoreceptor UVR8 [D]. Changsha: Hunan Normal University, 2016: 36-41
|
[6] |
蒋霞敏, 翟兴文, 王丽, 等. 雨生红球藻对紫外辐射的生理适应及超微结构变化 [J]. 水产学报, 2003, 27(2): 105-112.
Jiang X M, Zhai X W, Wang L, et al. Physiological adaptation and ultrastructure change of Haematococcus pluvialis exposed to ultraviolet radiation [J]. Journal of Fishing of China, 2003, 27(2): 105-112.
|
[7] |
Wang Q, Zuo Z, Wang X, et al. Photoactivation and inactivation of Arabidopsis cryptochrome 2 [J]. Science, 2016, 354(6310): 343-347. doi: 10.1126/science.aaf9030
|
[8] |
Yin R H. Ulm R How plants cope with UV-B: from perception to response [J]. Current Opinion in Plant Biology, 2017(37): 42-48.
|
[9] |
肖媛, 王高鸿, 刘永定. UV-B辐射对雨生红球藻光合特性和虾青素含量的影响及其响应 [J]. 水生生物学报, 2010, 34(6): 1077-1082.
Xiao Y, Wang G H, Liu Y D. UV-B effects on the photosynthetic features and astaxanthin accumulation of Haematococcus pluvialis and its responses [J]. Acta Hydrobiologica Sinica, 2010, 34(6): 1077-1082.
|
[10] |
Christie J M, Arvai A S, Katherine J, et al. Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges [J]. Science, 2012(335): 1492-1496.
|
[11] |
Wu D, Hu Q, Yan Z, et al. Structural basis of ultraviolet-B perception by UVR8 [J]. Nature, 2012, 484(7393): 214-219. doi: 10.1038/nature10931
|
[12] |
Morales L O, Brosche M, Vainonen J, et al. Multiple roles for UV resistance locus 8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation [J]. Plant Physiology, 2013, 161(2): 744-759. doi: 10.1104/pp.112.211375
|
[13] |
Al-Sady B, Kikis E A, Monte E, et al. Mechanistic duality of transcription factor function in phytochrome signaling [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008(105): 2232-2237.
|
[14] |
Park E, Kim Y, Choi G. Phytochrome B requires PIF degradation and sequestration to induce light responses across a wide range of light conditions [J]. The Plant Cell, 2018, 30(6): 1277-1292. doi: 10.1105/tpc.17.00913
|
[15] |
Yu Y, Liu H T. Coordinated shoot and root responses to light signaling in Arabidopsis [J]. Plant Communications, 2020, 1(2): 10026.
|
[16] |
张宏江, 杭伟, 马浩天, 等. 雨生红球藻 UVR8 的基因克隆和生物信息学分析 [J]. 西南农业学报, 2019, 32(9): 2025-2032.
Zhang H J, Hang W, Ma H T, et al. Gene cloning and bioinformatics analysis of a novel ultraviolet-B photoreceptor UV resistance locus 8 (UVR8) from the green alga Haematococcus pluvialis [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(9): 2025-2032.
|
[17] |
Rizzini L, Favory J J, Cloix C, et al. Perception of UV-B by the Arabidopsis UVR8 protein [J]. Science, 2011, 332(6025): 103-106. doi: 10.1126/science.1200660
|
[18] |
Oravecz A, Baumann A, Z Mate, et al. Constitutively photomorphogenic1 is required for the UV-B response in Arabidopsis [J]. Plant Cell, 2006, 18(8): 1975-1990. doi: 10.1105/tpc.105.040097
|
[19] |
Lau O S, Deng X W. The photomorphogenic repressors COP1 and DET1: 20 years later [J]. Trends in Plant Science, 2012, 17(10): 584-593. doi: 10.1016/j.tplants.2012.05.004
|
[20] |
Lin R C, Wang H Y. Targeting proteins for degradation by Arabidopsis COP1: teamwork is what matters [J]. Journal of Integrative Plant Biology, 2007, 49(1): 35-42. doi: 10.1111/j.1744-7909.2006.00414.x
|
[21] |
李合生. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社, 2000: 167-169.
Li H S. Principles and Techniques of Plant Physiological Biochemical Experiment [M]. Beijing: Higher Education Press, 2000: 167-169
|
[22] |
Boussiba S, Vonshak A. Astaxanthin accumulation in the green alga Haematococcus pluvialis [J]. Plant and Cell Physiology, 1991, 32(10): 77-82.
|
[23] |
Gao Z Q, Meng C X, Zhang X W, et al. Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis [J]. Enzyme and Microbial Technology, 2012, 51(4): 225-230. doi: 10.1016/j.enzmictec.2012.07.001
|
[24] |
崔红利, 许文鑫, 崔玉琳, 等. 光诱导雨生红球藻虾青素积累的信号通路转录组分析 [J]. 生物工程学报, 2020, 37(7): 1-17.
Cui H L, Xu W X, Cui Y L, et al. Transcriptome analysis of signal transduction pathway involved in light inducing astaxanthin accumulation in Haematococcus pluvialis [J]. Chinese Journal of Biotechnology, 2020, 37(7): 1-17.
|
[25] |
张春辉. 促进雨生红球藻不动细胞累积虾青素的代谢规律研究 [D]. 青岛: 中国科学院海洋研究所, 2019: 27-34.
Zhang C H. Study on the metabolism regulation of enhancing astaxanthin accumulation in Haematococcus pluvialis [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2019: 27-34.
|
[26] |
Han D X, Wang J F, Sommerfeld M, et al. Susceptibility and protective mechanisms of motile and non motile cells of Haematococcus pluvialis (Chlorophyceae) to photooxidative stress [J]. Journal of Phycology, 2012, 483(3): 693-705.
|
[27] |
Li Y T, Sommerfeld M, Chen F, et al. Consumption of oxygen by astaxanthin biosynthesis: A protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae) [J]. Journal of Plant Physiology, 2008, 165(17): 1783-1797. doi: 10.1016/j.jplph.2007.12.007
|
[28] |
李尚, 陶益, 刀国华, 等. 紫外线对再生水中斜生栅藻的生长抑制效果 [J]. 环境工程, 2020, 38(10): 97-102, 113.
Li S, Tao Y, Dao G H, et al. Growth suppression effect of UV-C irradiation on Scenedesmus obliquus in reclaimed water [J]. Environmental Engineering, 2020, 38(10): 97-102, 113.
|
[29] |
王宝贝. 雨生红球藻的光保护机制及脂肪酸与虾青素合成的相互关系 [D]. 厦门: 厦门大学, 2014: 67-71.
Wang B B. Photoprotection mechanisms and crosstalk between the biosynthesis of fatty acids and astaxanthin in Haematococcus pluvialis [D]. Xiamen: Xiamen University, 2014: 67-71.
|
[30] |
Zhu C, Chen J, Liu J H, et al. Transcriptomic and metabolic analysis of an astaxanthin hyperproducing Haematococcus pluvialis mutant obtained by low-temperature plasma (LTP) mutagenesis under high light irradiation [J]. Algal Research, 2020(45): 101746. doi: 10.1016/j.algal.2019.101746
|
[31] |
Lee C, Choi Y E, Yun Y S. Corrigendum to “A Strategy for promoting astaxanthin accumulation in Haematococcus pluvialis by 1-aminocyclopropane-1-carboxylic acid application” [J]. Journal of Biotechnology, 2016(236): 120-127.
|
[32] |
Fernández M B, Tossi V, Lamattina L, et al. A comprehensive phylogeny reveals functional conservation of the UV-B photoreceptor UVR8 from green algae to higher plants [J]. Frontiers in Plant Science, 2016(7): 1698.
|
[33] |
Huang X, Ouyang X, Yang P, et al. Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16669-16674. doi: 10.1073/pnas.1316622110
|
[34] |
Tilbrook K, Dubois M, Crocco C D, et al. UV-B perception and acclimation in Chlamydomonas reinhardtii [J]. Plant Cell, 2016, 28(4): 966-983. doi: 10.1105/tpc.15.00287
|