LU Cheng-Cheng, ZHAO Yi-Fan, FAN Chun-Xin, WANG Jian. IDENTIFICATION OF PROXIMAL CIS-REGULATORY ELEMENT FOR MUSCLE HIGHLY EXPRESSED GENES IN ZEBRAFISH[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(3): 292-302. DOI: 10.7541/2022.2020.290
Citation: LU Cheng-Cheng, ZHAO Yi-Fan, FAN Chun-Xin, WANG Jian. IDENTIFICATION OF PROXIMAL CIS-REGULATORY ELEMENT FOR MUSCLE HIGHLY EXPRESSED GENES IN ZEBRAFISH[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(3): 292-302. DOI: 10.7541/2022.2020.290

IDENTIFICATION OF PROXIMAL CIS-REGULATORY ELEMENT FOR MUSCLE HIGHLY EXPRESSED GENES IN ZEBRAFISH

Funds: Supported by the National Natural Science Foundation of China (31702329 and 31772406)
  • Received Date: January 03, 2021
  • Rev Recd Date: May 25, 2021
  • Available Online: March 07, 2022
  • Published Date: March 14, 2022
  • The related factors to the formation and growth traits of fish muscle are important topics in aquatic biology and aquaculture research. The expression and regulation of muscle component genes are essential to its tissue function maintenance and trait control, and the identification of cis- regulatory elements in muscle tissue helps explain the genetic basis of muscle formation. Conserved DNA sequences may be found among cis-regulatory elements, whose regulating genes have similar expression patterns. To predict the regulatory elements for zebrafish muscle gene expression, we explored the conservation features for DNA sequences in proximal non-coding regions of muscle highly expressed genes. By analyzing RNA-seq data of multiple zebrafish tissues from public database, we located muscle highly expressed genes as targets and lowly expressed genes as control, respectively. The GO enrichment analysis of these highly expressed genes confirmed their functions associated with muscle development. By discriminative mode of MEME motif discovery tools and using non-coding region of lowly expressed genes as background, we found five target conserved DNA regions, including six DNA motifs of the same sequence, around 300 bp in length, close to gene start sites of five muscle highly expressed genes. Meanwhile, DNA sequences of these five target regions had high pairwise identities (78.62%—84.19%). The results of qPCR confirmed the remarkably higher expression of these five genes in muscle than other tissues. We constructed an eGFP expression reporter plasmid containing the tol2 transposon system. One of the target regions, a 334 bp fragment at upstream of zgc:9242, was cloned into the plasmid at upstream of the eGFP driven by the base promoter. After the plasmid was injected into zebrafish embryos, a greater proportion of muscle specific fluorescence was observed in embryos carrying the target DNA fragment than in the control group (odds ratio=6.487, P=0.000 at 48 hpf), indicating that the 334 bp DNA fragment may enhance muscle gene expression. Using Tomtom motif comparison tools, we also found the candidate binding sites for Myod and other transcription factors within DNA motifs. Our findings suggest that the DNA motif cluster fragments might act as transcriptional regulatory elements to specifically enhance zebrafish muscle gene expression. These results can help us better understanding the genetic basis for fish muscle gene expression and provide a new strategy for predicting tissue specific cis-regulatory elements by bioinformatics.
  • [1]
    周瑞雪, 黄斌, 蒙涛, 等. 鳜碱性肌球蛋白轻链基因cDNA的克隆及其发育表达分析 [J]. 水生生物学报, 2010, 34(5): 927-934.

    Zhou R X, Huang B, Meng T, et al. Cloning and ontogenetic expression analysis of the alkali myosin light chain gene in Siniperca chuasti [J]. Acta Hydrobiologica Sinica, 2010, 34(5): 927-934.
    [2]
    Ennion S, Gauvry L, Butterworth P, et al. Small-diameter white myotomal muscle fibres associated with growth hyperplasia in the carp (Cyprinus carpio) express a distinct myosin heavy chain gene [J]. The Journal of Experimental Biology, 1995, 198(7): 1603-1611. doi: 10.1242/jeb.198.7.1603
    [3]
    Blankvoort S, Witter M P, Noonan J, et al. Marked diversity of unique cortical enhancers enables neuron-specific tools by enhancer-driven gene expression [J]. Current Biology, 2018, 28(13): 2103-2114. doi: 10.1016/j.cub.2018.05.015
    [4]
    Shima Y, Sugino K, Hempel C M, et al. A Mammalian enhancer trap resource for discovering and manipulating neuronal cell types [J]. eLife, 2016(5): e13503.
    [5]
    Symon A, Harley V. SOX9: A genomic view of tissue specific expression and action [J]. The International Journal of Biochemistry & Cell Biology, 2017(87): 18-22.
    [6]
    Carroll S B. Evo-Devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution [J]. Cell, 2008, 134(1): 25-36. doi: 10.1016/j.cell.2008.06.030
    [7]
    Turner E E, Cox T C. Genetic evidence for conserved non-coding element function across species-the ears have it [J]. Frontiers in Physiology, 2014(5): 7.
    [8]
    Marcovitz A, Jia R, Bejerano G. “Reverse Genomics” predicts function of human conserved noncoding elements [J]. Molecular Biology and Evolution, 2016, 33(5): 1358-1369. doi: 10.1093/molbev/msw001
    [9]
    Soleimani V D, Nguyen D, Ramachandran P, et al. Cis-regulatory determinants of MyoD function [J]. Nucleic Acids Research, 2018, 46(14): 7221-7235. doi: 10.1093/nar/gky388
    [10]
    Choi J, Costa M L, Mermelstein C S, et al. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes [J]. Proceedings of the National Academy of Sciences, 1990, 87(20): 7988-7992. doi: 10.1073/pnas.87.20.7988
    [11]
    Berkes C A, Tapscott S J. MyoD and the transcriptional control of myogenesis [J]. Seminars in Cell & Developmental Biology, 2005, 16(4-5): 585-595.
    [12]
    Burghoorn J, Piasecki B P, Crona F, et al. The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box [J]. Developmental Biology, 2012, 368(2): 415-426. doi: 10.1016/j.ydbio.2012.05.033
    [13]
    Jaeger S A, Chan E T, Berger M F, et al. Conservation and regulatory associations of a wide affinity range of mouse transcription factor binding sites [J]. Genomics, 2010, 95(4): 185-195. doi: 10.1016/j.ygeno.2010.01.002
    [14]
    Woolfe A, Goodson M, Goode D K, et al. Highly Conserved Non-Coding Sequences Are Associated with Vertebrate Development [J]. PLoS Biology, 2005, 3(1): e7.
    [15]
    Polychronopoulos D, King J W D, Nash A J, et al. Conserved non-coding elements: developmental gene regulation meets genome organization [J]. Nucleic Acids Research, 2017, 45(22): 12611-12624. doi: 10.1093/nar/gkx1074
    [16]
    Pasquier J, Cabau C, Nguyen T, et al. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database [J]. BMC Genomics, 2016, 17(1): 368. doi: 10.1186/s12864-016-2709-z
    [17]
    Hu P, Liu M, Zhang D, et al. Global identification of the genetic networks and cis -regulatory elements of the cold response in zebrafish [J]. Nucleic Acids Research, 2015, 43(19): 9198-9213. doi: 10.1093/nar/gkv780
    [18]
    Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114-2120. doi: 10.1093/bioinformatics/btu170
    [19]
    Kim D, Paggi J M, Park C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype [J]. Nature Biotechnology, 2019(37), 907-915.
    [20]
    Pertea M, Kim D, Pertea G M, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie, and Ballgown [J]. Nature Protocols, 2016, 11(9): 1650-1667. doi: 10.1038/nprot.2016.095
    [21]
    Robinson M D, McCarthy D J, Smyth G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data [J]. Bioinformatics, 2010, 26(1): 139-140. doi: 10.1093/bioinformatics/btp616
    [22]
    Ashburner M, Ball C A, Blake J A, et al. Gene Ontology: tool for the unification of biology [J]. Nature Genetics, 2000, 25(1): 25-29. doi: 10.1038/75556
    [23]
    Ginestet C. ggplot2: Elegant graphics for data analysis [J]. Journal of the Royal Statistical Society, 2011, 174(1): 245-246. doi: 10.1111/j.1467-985X.2010.00676_9.x
    [24]
    Engström P G, Fredman D, Lenhard B. Ancora: a web resource for exploring highly conserved noncoding elements and their association with developmental regulatory genes [J]. Genome Biology, 2008, 9(2): R34. doi: 10.1186/gb-2008-9-2-r34
    [25]
    Bailey T L, Boden M, Buske F A, et al. MEME Suite: tools for motif discovery and searching [J]. Nucleic Acids Research, 2009, 37(Web Server issue): W202-W208.
    [26]
    Gupta S, Stamatoyannopoulos J A, Bailey T L, et al. Quantifying similarity between motifs [J]. Genome Biology, 2007, 8(2): R24. doi: 10.1186/gb-2007-8-2-r24
    [27]
    Khan A, Fornes O, Stigliani A, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework [J]. Nucleic Acids Research, 2018, 46(D1): D260-D266. doi: 10.1093/nar/gkx1126
    [28]
    Xue Y L, Xiao A, Wen L, et al. Generation and Characterization of blood vessel specific EGFP transgenic zebrafish via Tol2 transposon mediated enhancer trap screen [J]. Progress in Biochemistry and Biophysics, 2010, 37(7): 720-727. doi: 10.3724/SP.J.1206.2010.00301
    [29]
    Farrell C M, West A G, Felsenfeld G. Conserved CTCF insulator elements flank the mouse and human β-globin loci [J]. Molecular and Cellular Biology, 2002, 22(11): 3820-3831. doi: 10.1128/MCB.22.11.3820-3831.2002
    [30]
    Kudoh T, Tsang M, Hukriede N A. et al. A gene expression screen in zebrafish embryogenesis [J]. Genome Research, 2001, 11(12): 1979-1987. doi: 10.1101/gr.209601
    [31]
    Yamamoto K, Yoshida H, Kokame K, et al. Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-Ⅱ [J]. Journal of Biochemistry, 2004, 136(3): 343-350. doi: 10.1093/jb/mvh122
    [32]
    Kophengnavong T, Michnowicz J E, Blackwell T K. Establishment of distinct MyoD, E2A, and Twist DNA binding specificities by different basic region-DNA conformations [J]. Molecular and Cellular Biology, 2000, 20(1): 261-272. doi: 10.1128/MCB.20.1.261-272.2000
    [33]
    Lemercier C, To R Q, Carrasco R A, et al. The basic helix-loop-helix transcription factor Mist1 functions as a transcriptional repressor of MyoD [J]. The EMBO Journal, 1998, 17(5): 1412-1422. doi: 10.1093/emboj/17.5.1412
    [34]
    Cao Y, Yao Z, Sarkar D, et al. Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming [J]. Developmental Cell, 2010, 18(4): 662-674. doi: 10.1016/j.devcel.2010.02.014
    [35]
    Chang A T, Liu Y, Ayyanathan K, et al. An evolutionarily conserved DNA architecture determines target specificity of the TWIST family bHLH transcription factors [J]. Genes & Development, 2015, 29(6): 603-616.
    [36]
    Thisse B, Thisse C. Fast Release Clones: A High Throughput Expression Analysis. ZFIN Direct Data Submission [DB]. http://zfin.org, 2004.
    [37]
    Palumbo V, Segat L, Padovan L, et al. Melusin gene (ITGB1BP2) nucleotide variations study in hypertensive and cardiopathic patients [J]. BMC Medical Genetics, 2009, 10(1): 140. doi: 10.1186/1471-2350-10-140
    [38]
    Brancaccio M, Guazzone S, Menini N, et al. Melusin is a new muscle-specific interactor for beta (1) integrin cytoplasmic domain [J]. Journal of Biological Chemistry, 1999, 274(41): 29282-29288. doi: 10.1074/jbc.274.41.29282
    [39]
    Geisler S B, Robinson D, Hauringa M, et al. Obscurin-like 1, OBSL1, is a novel cytoskeletal protein related to obscurin [J]. Genomics, 2007, 89(4): 521-531. doi: 10.1016/j.ygeno.2006.12.004
    [40]
    Klos M, Mundada L, Banerjee I, et al. Altered myocyte contractility and calcium homeostasis in alpha-myosin heavy chain point mutations linked to familial dilated cardiomyopathy [J]. Archives of Biochemistry and Biophysics, 2017(615): 53-60.
    [41]
    Granados-Riveron J T, Ghosh T K, Pope M, et al. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects [J]. Human Molecular Genetics, 2010, 19(20): 4007-4016. doi: 10.1093/hmg/ddq315
    [42]
    Shih Y H, Zhang Y, Ding Y, et al. Cardiac transcriptome and dilated cardiomyopathy genes in zebrafish [J]. Circulation Cardiovascular Genetics, 2015, 8(2): 261-269. doi: 10.1161/CIRCGENETICS.114.000702
    [43]
    Chopra S S, Stroud D M, Watanabe H, et al. Voltage-gated sodium channels are required for heart development in zebrafish [J]. Circulation Research, 2010, 106(8): 1342-1350. doi: 10.1161/CIRCRESAHA.109.213132
    [44]
    Bagatto B, Francl J, Liu B, et al. Cadherin2 (N-cadherin) plays an essential role in zebrafish cardiovascular development [J]. BMC Developmental Biology, 2006(6): 23.
    [45]
    Zheng L, Zhang G M, Dong Y P, et al. Genetic variant of MYLK4 gene and its association with growth traits in Chinese cattle [J]. Animal Biotechnology, 2019, 30(1): 30-35. doi: 10.1080/10495398.2018.1426594
    [46]
    Herrer I, Roselló-Lletí E, Rivera M, et al. RNA-sequencing analysis reveals new alterations in cardiomyocyte cytoskeletal genes in patients with heart failure [J]. Laboratory Investigation, 2014, 94(6): 645-653. doi: 10.1038/labinvest.2014.54
    [47]
    Hsieh F C, Lu Y F, Liau I, et al. Zebrafish VCAP1X2 regulates cardiac contractility and proliferation of cardiomyocytes and epicardial cells [J]. Scientific Reports, 2018, 8(1): 7856. doi: 10.1038/s41598-018-26110-3
    [48]
    Gerull B, Gramlich M, Atherton J, et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy [J]. Nature Genetics, 2002, 30(2): 201-204. doi: 10.1038/ng815
    [49]
    Zammit P S. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis [J]. Seminars in Cell & Developmental Biology, 2017(72): 19-32.
    [50]
    Tokutake Y, Yamada K, Hayashi S, et al. IRE1-XBP1 pathway of the unfolded protein response is required during early differentiation of C2C12 Myoblasts [J]. International Journal of Molecular Sciences, 2019, 21(1): 182. doi: 10.3390/ijms21010182
    [51]
    Thisse B, Messal M E, Perrin-Schmitt F. The twist gene: isolation of a Drosophila zygotle gene necessary for the establishment of dorsoventral pattern [J]. Nucleic Acids Research, 1987, 15(8): 3439-3453. doi: 10.1093/nar/15.8.3439
    [52]
    Hamamori Y, Wu H Y, Sartorelli V, et al. The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist [J]. Molecular and Cellular Biology, 1997, 17(11): 6563-6573. doi: 10.1128/MCB.17.11.6563
    [53]
    Liu N, Garry G A, Li S, et al. A Twist2-dependent progenitor cell contributes to adult skeletal muscle [J]. Nature Cell Biology, 2017, 19(3): 202-213. doi: 10.1038/ncb3477
  • Related Articles

    [1]WANG Hua-Lin, ZHU Zuo-Yan, SUN Yong-Hua. TALEN-MEDIATED KNOCK OUT OF ZEBRAFISH SOCS2 AND THE GROWTH PERFORMANCE OF SOCS2 MUTANTS[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(4): 831-836. DOI: 10.7541/2015.109
    [2]Zhu Chang-Sheng, Jiang Bo, Zhou Qiu-Bai. The effects of different levels of EPA AND DHA on lipids metabolism, growth and reproductive performance of rice field eel(Monopterus albus)[J]. ACTA HYDROBIOLOGICA SINICA, 2013, 37(4): 648-655. DOI: 10.7541/2013.76
    [3]Shahid Mahboob, Bilal Hussain, Zahid Iqbal, Abdul Shakoor Chaudhry. ESTIMATION OF VOLATILE CONSTITUENTS IN THE FISH FLESH FROM WILD AND FARMED CIRRHINA MRIGALA AND CYPRINUS CARPIO[J]. ACTA HYDROBIOLOGICA SINICA, 2009, 33(3): 484-491.
    [9]Wu Jihua, Liang Yanling, Sun Xida. NEWLY RECORDED SPECIES OF FREE-LIVING NEMATODES FROM CHINA (CHROMADORIDA,ENOPLIDA ARAEOLAIMIDA)[J]. ACTA HYDROBIOLOGICA SINICA, 1997, 21(4): 320-321.
    [10]Lin Ding, Mao Yongqing, Cai Fasheng. EXPERIMENTS ON THE PROTEIN REQUIREMENTS OF GRASS CARP(CTENOPHARYNGODON IDELLUS (C. V.))JUVENILES[J]. ACTA HYDROBIOLOGICA SINICA, 1980, 4(2): 207-212.

Catalog

    Article views (1898) PDF downloads (101) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return