Citation: | WANG Yue, LIU Huan-Zhang, LI Sha, YU Dan. OPTIMIZATION OF FISH ENVIRONMENTAL DNA SAMPLE PROCESSING AND PRESERVATION TECHNOLOGY BASED ON DROPLET DIGITAL PCR[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(3): 332-341. DOI: 10.7541/2022.2021.281 |
[1] |
Butchart S H M, Walpole M, Collen B, et al. Global biodiversity: indicators of recent declines [J]. Science, 2010, 328(5982): 1164-1168. doi: 10.1126/science.1187512
|
[2] |
Wang P, Yan Z, Yang S, et al. Environmental DNA: an emerging tool in ecological assessment [J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(5): 651-656. doi: 10.1007/s00128-019-02720-z
|
[3] |
Bohmann K, Evans A, Gilbert M, et al. Environmental DNA for wildlife biology and biodiversity monitoring [J]. Trends in Ecology & Evolution, 2014, 29(29): 358-367.
|
[4] |
马鸿娟, Stewart Kathryn, 马利民, 等. 环境DNA及其在水生生态系统保护中的应用 [J]. 生态学杂志, 2016, 35(2): 244-251.
Ma H J, Stewart K, Ma L M, et al. Environmental DNA and its application in protecting aquatic ecosystems [J]. Chinese Journal of Ecology, 2016, 35(2): 244-251.
|
[5] |
Jeunen G J, Knapp M, Spencer H G, et al. Species-level biodiversity assessment using marine environmental DNA metabarcoding requires protocol optimization and standardization [J]. Ecology and Evolution, 2019, 9(3): 1323-1335. doi: 10.1002/ece3.4843
|
[6] |
Barnes M A, Turner C R. The ecology of environmental DNA and implications for conservation genetics [J]. Conservation Genetics, 2016, 17(1): 1-17. doi: 10.1007/s10592-015-0775-4
|
[7] |
Yang J, Zhang X. eDNA metabarcoding in zooplankton improves the ecological status assessment of aquatic ecosystems [J]. Environment International, 2020(134): 105230.
|
[8] |
Cilleros K, Valentini A, Allard L, et al. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes [J]. Molecular Ecology Resources, 2019, 19(1): 27-46. doi: 10.1111/1755-0998.12900
|
[9] |
Rees H C, Maddison B C, Middleditch D J, et al. Review: The detection of aquatic animal species using environmental DNA - a review of eDNA as a survey tool in ecology [J]. Journal of Applied Ecology, 2014, 51(5): 1450-1459. doi: 10.1111/1365-2664.12306
|
[10] |
Mahon A R, Jerde C L, Galaska M, et al. Validation of eDNA surveillance sensitivity for detection of asian carps in controlled and field experiments [J]. PLoS One, 2013, 8(3): e58316. doi: 10.1371/journal.pone.0058316
|
[11] |
Xu N, Zhu B, Shi F, et al. Monitoring seasonal distribution of an endangered anadromous sturgeon in a large river using environmental DNA [J]. Die Naturwissenschaften, 2018, 105(11-12): 62. doi: 10.1007/s00114-018-1587-4
|
[12] |
Takahara T, Minamoto T, Yamanaka H, et al. Estimation of fish biomass using environmental DNA [J]. PLoS One, 2012, 7(4): e35868. doi: 10.1371/journal.pone.0035868
|
[13] |
Kelly R P, Port J A, Yamahara K M, et al. Using environmental dna to census marine fishes in a large mesocosm [J]. PLoS One, 2014, 9(1): e86175. doi: 10.1371/journal.pone.0086175
|
[14] |
Jerde C L, Wilson E A, Dressler T L. Measuring global fish species richness with eDNA metabarcoding [J]. Molecular Ecology Resources, 2019, 19(1): 19-22. doi: 10.1111/1755-0998.12929
|
[15] |
舒璐, 林佳艳, 徐源, 等. 基于环境DNA宏条形码的洱海鱼类多样性研究 [J]. 水生生物学报, 2020, 44(5): 7.
Shu L, Lin J Y, Xu Y, et al. Investigating the fish diversity in Erhai Lake based on environmental dna metabarcoding [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 7.
|
[16] |
Ahn H, Kume M, Terashima Y, et al. Evaluation of fish biodiversity in estuaries using environmental DNA metabarcoding [J]. PLoS One, 2020, 15(10): e0231127. doi: 10.1371/journal.pone.0231127
|
[17] |
Thomsen P F, Willerslev E. Environmental DNA-An emerging tool in conservation for monitoring past and present biodiversity [J]. Biological Conservation, 2015(183): 4-18.
|
[18] |
Hinlo R, Gleeson D, Lintermans M, et al. Methods to maximise recovery of environmental DNA from water samples [J]. PLoS One, 2017, 12(6): e0179251. doi: 10.1371/journal.pone.0179251
|
[19] |
Deiner K, Walser J C, Mächler E, et al. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA [J]. Biological Conservation, 2015(183): 53-63.
|
[20] |
Eichmiller J J, Miller L M, Sorensen P W. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish [J]. Molecular Ecology Resources, 2016, 16(1): 56-68. doi: 10.1111/1755-0998.12421
|
[21] |
Spens J, Evans A R, Halfmaerten D, et al. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter [J]. Methods in Ecology and Evolution, 2016, 8(5): 635-645.
|
[22] |
Djurhuus A, Port J, Closek C J, et al. Evaluation of Filtration and DNA extraction methods for environmental DNA biodiversity assessments across multiple trophic levels [J]. Frontiers in Marine Science, 2017(4): 314.
|
[23] |
Renshaw M A, Olds B P, Jerde C L, et al. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroformisoamyl alcohol DNA extraction [J]. Molecular Ecology Resources, 2015, 15(1): 168-176. doi: 10.1111/1755-0998.12281
|
[24] |
Liang Z, Keeley A. Filtration recovery of extracellular DNA from environmental water samples. Environmental Science & Technology, 2013. 47(16): 9324-9331.
|
[25] |
赵新, 兰青阔, 陈锐, 等. 应用微滴数字PCR技术快速检测食用菌中沙门氏菌 [J]. 食品与生物技术学报, 2017, 36(3): 315-321. doi: 10.3969/j.issn.1673-1689.2017.03.014
Zhao X, Lan Q K, Chen R, et al. Rapid detection of salmonella spp. in edible fungi by droplet digital PCR [J]. Journal of Food Science and Biotechnology, 2017, 36(3): 315-321. doi: 10.3969/j.issn.1673-1689.2017.03.014
|
[26] |
Doi H, Takahara T, Minamoto T, et al. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species [J]. Environmental Science & Technology, 2015, 49(9): 5601-5608.
|
[27] |
Mauvisseau Q, Davy-Bowker J, Bulling M, et al. Improving detection capabilities of a critically endangered freshwater invertebrate with environmental DNA using digital droplet PCR [J]. BioRxiv, 2019,DOI: 10.1101/661447.
|
[28] |
Wood S A, Pochon X, Laroche O, et al. A comparison of droplet digital polymerase chain reaction (PCR), quantitative PCR and metabarcoding for species-specific detection in environmental DNA [J]. Molecular Ecology Resources, 2019, 19(6): 1407-1419. doi: 10.1111/1755-0998.13055
|
[29] |
Whale AS, Huggett J F, Simon C, et al. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation [J]. Nucleic Acids Research, 2012, 40(11): e82. doi: 10.1093/nar/gks203
|
[30] |
Hindson B J, Ness K D, Masquelier D A, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number [J]. Analytical Chemistry, 2011, 83(22): 8604-8610. doi: 10.1021/ac202028g
|
[31] |
Deiner K, Altermatt F. Transport distance of invertebrate environmental DNA in a natural river [J]. PLoS One., 2014, 9(2): e88786. doi: 10.1371/journal.pone.0088786
|
[32] |
Costas B A, Mcmanus G, Doherty M, et al. Use of species-specific primers and PCR to measure the distributions of planktonic ciliates in coastal waters [J]. Limnology and Oceanography Methods, 2007, 5(6): 163-173. doi: 10.4319/lom.2007.5.163
|
[33] |
Aljanabi S M, Martinez I. Universal and rapid salt-extraction of high quality gnomic DNA for PCR-based techniques [J]. Nucleic Acids Research, 1997, 25(22): 4692-4693. doi: 10.1093/nar/25.22.4692
|
[34] |
Coyne K J, Handy S M, Demir E, et al. Improved quantitative real-time PCR assays for enumeration of harmful algal species in field samples using an exogenous DNA reference standard [J]. Limnology and Oceanography Methods, 2005, 3(9): 381-391. doi: 10.4319/lom.2005.3.381
|
[35] |
Longmire J L, Maltbie M, Baker R J. Use of 'Lysis Buffer' in DNA isolation and its implication for museum collections [J]. Occasional Papers Museum of Texas Tech University, 1997(163): 1-3.
|
[36] |
Minamoto T, Naka T, Moji K, et al. Techniques for the practical collection of environmental DNA: filter selection, preservation, and extraction [J]. Limnology, 2016, 17(1): 23-32. doi: 10.1007/s10201-015-0457-4
|
[37] |
Jerde C L, Chadderton W L, Mahon A R, et al. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70(4): 522-526. doi: 10.1139/cjfas-2012-0478
|
[38] |
Jerde C L, Mahon A R, Chadderton W L, et al. “Sight-unseen” detection of rare aquatic species using environmental DNA [J]. Conservation Letters, 2011, 4(2): 150-157. doi: 10.1111/j.1755-263X.2010.00158.x
|
[39] |
Bylemans J, Gleeson D M, Hardy C M, et al. Toward an ecoregion scale evaluation of eDNA metabarcoding primers: A case study for the freshwater fish biodiversity of the Murray-Darling Basin (Australia) [J]. Ecology and Evolution, 2018, 8(17): 8697-8712. doi: 10.1002/ece3.4387
|
[40] |
Goldberg C S, Strickler K M, Pilliod D S. Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms [J]. Biological Conservation, 2015(183): 1-3. doi: 10.1016/j.biocon.2014.11.040
|
[41] |
Majaneva M, Diserud O H, Eagle S H C, et al. Environmental DNA filtration techniques affect recovered biodiversity [J]. Scientific Reports, 2018, 8(1): 4682. doi: 10.1038/s41598-018-23052-8
|
[42] |
汪功伟, 李浔. 深层过滤技术在生物制药工艺中的运用 [J]. 中国化工贸易, 2015(15): 151-151.
Wang G W, Li X. Application of deep filtration technology in biopharmaceutical process [J]. China Chemical Trade, 2015(15): 151-151.
|
[43] |
Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications [J]. Proceedings of the National Academy of Sciences, 1979, 76(9): 4350-4354. doi: 10.1073/pnas.76.9.4350
|
[44] |
Thornton D J, Carlstedt I, Sheehan J K. Identification of glycoproteins on nitrocellulose membranes and gels [J]. Molecular Biotechnology, 1996, 5(2): 171. doi: 10.1007/BF02789065
|
[45] |
Mauvisseau Q, Halfmaerten D, Sabrina N, et al. Effects of preservation strategies on environmental DNA detection and quantification using ddPCR [J]. Environmental DNA, 2021, 3(4): 815-822. doi: 10.1002/edn3.188
|
[46] |
Kumar G, Eble J E, Gaither M R. A practical guide to sample preservation and pre-PCR processing of aquatic environmental DNA [J]. Molecular Ecology Resources, 2020, 20(1): 29-39. doi: 10.1111/1755-0998.13107
|
[47] |
Goldberg C S, Turner C R, Deiner K, et al. Critical considerations for the application of environmental DNA methods to detect aquatic species [J]. Methods in Ecology and Evolution, 2016, 7(11): 1299-1307. doi: 10.1111/2041-210X.12595
|
[48] |
Deiner K, Bik H M, Machler E, et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities [J]. Molecular Ecology, 2017, 26(21): 5872-5895. doi: 10.1111/mec.14350
|
[49] |
Buxton A S, Groombridge J J, Griffiths R A. Is the detection of aquatic environmental DNA influenced by substrate type [J]? PLoS One, 2017, 12(8): e0183371. doi: 10.1371/journal.pone.0183371
|