WANG Yue, LIU Huan-Zhang, LI Sha, YU Dan. OPTIMIZATION OF FISH ENVIRONMENTAL DNA SAMPLE PROCESSING AND PRESERVATION TECHNOLOGY BASED ON DROPLET DIGITAL PCR[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(3): 332-341. DOI: 10.7541/2022.2021.281
Citation: WANG Yue, LIU Huan-Zhang, LI Sha, YU Dan. OPTIMIZATION OF FISH ENVIRONMENTAL DNA SAMPLE PROCESSING AND PRESERVATION TECHNOLOGY BASED ON DROPLET DIGITAL PCR[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(3): 332-341. DOI: 10.7541/2022.2021.281

OPTIMIZATION OF FISH ENVIRONMENTAL DNA SAMPLE PROCESSING AND PRESERVATION TECHNOLOGY BASED ON DROPLET DIGITAL PCR

Funds: Supported by National Key R & D Program of China (2018YFD0900806); Director’s Fund of the Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, China Three Gorges Corporation (0704174); National Natural Science Foundation of China (31872234, 31801982); Sino BON-Inland Water Fish Diversity Observation Network (SINO BON)
  • Received Date: October 20, 2021
  • Rev Recd Date: January 09, 2022
  • Available Online: March 07, 2022
  • Published Date: March 14, 2022
  • In this study, the methods of fish environmental DNA (eDNA) capture, extraction and preservation were optimized by Droplet Digital PCR (ddPCR) quantitative technology using Carassius auratus in the laboratory, and the direct PCR technology without DNA extraction was preliminarily explored. The results showed that the mixed cellulose ester membrane produced the most ddPCR product, among the six kinds of filter membrane, and the polycarbonate membrane produced the lowest ddPCR product with only 1/17 of mixed cellulose ester membrane. The method which extracted the highest amount of DNA was the Qiagen DNeasy PowerWater kit, and the lowest was the high-salt method. The Qiagen DNeasy PowerWater kit yielded better results compared to the high-salt method, showing a 5.5-fold improvement in DNA yield. Different filter membranes and extraction methods have significant interactions on the total amount of final ddPCR product (P<0.001), filtration through the mixed cellulose ester membranes and Qiagen DNeasy PowerWater kit significantly outperformed other combinations of capture and extraction methods. Filter membranes stored at –20℃ or stored in Longmire's buffer solution recovered the most ddPCR product. The results of direct PCR amplification without DNA extraction showed that the high-fidelity enzyme of Vazyme can directly amplify the water samples and obtain the target DNA product. This study, compared the key steps in the eDNA operation process in detail, and the optimal protocol of fish eDNA sample processing and preservation was determined, which provided a reference for the establishment of eDNA standardized experimental process.
  • [1]
    Butchart S H M, Walpole M, Collen B, et al. Global biodiversity: indicators of recent declines [J]. Science, 2010, 328(5982): 1164-1168. doi: 10.1126/science.1187512
    [2]
    Wang P, Yan Z, Yang S, et al. Environmental DNA: an emerging tool in ecological assessment [J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(5): 651-656. doi: 10.1007/s00128-019-02720-z
    [3]
    Bohmann K, Evans A, Gilbert M, et al. Environmental DNA for wildlife biology and biodiversity monitoring [J]. Trends in Ecology & Evolution, 2014, 29(29): 358-367.
    [4]
    马鸿娟, Stewart Kathryn, 马利民, 等. 环境DNA及其在水生生态系统保护中的应用 [J]. 生态学杂志, 2016, 35(2): 244-251.

    Ma H J, Stewart K, Ma L M, et al. Environmental DNA and its application in protecting aquatic ecosystems [J]. Chinese Journal of Ecology, 2016, 35(2): 244-251.
    [5]
    Jeunen G J, Knapp M, Spencer H G, et al. Species-level biodiversity assessment using marine environmental DNA metabarcoding requires protocol optimization and standardization [J]. Ecology and Evolution, 2019, 9(3): 1323-1335. doi: 10.1002/ece3.4843
    [6]
    Barnes M A, Turner C R. The ecology of environmental DNA and implications for conservation genetics [J]. Conservation Genetics, 2016, 17(1): 1-17. doi: 10.1007/s10592-015-0775-4
    [7]
    Yang J, Zhang X. eDNA metabarcoding in zooplankton improves the ecological status assessment of aquatic ecosystems [J]. Environment International, 2020(134): 105230.
    [8]
    Cilleros K, Valentini A, Allard L, et al. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes [J]. Molecular Ecology Resources, 2019, 19(1): 27-46. doi: 10.1111/1755-0998.12900
    [9]
    Rees H C, Maddison B C, Middleditch D J, et al. Review: The detection of aquatic animal species using environmental DNA - a review of eDNA as a survey tool in ecology [J]. Journal of Applied Ecology, 2014, 51(5): 1450-1459. doi: 10.1111/1365-2664.12306
    [10]
    Mahon A R, Jerde C L, Galaska M, et al. Validation of eDNA surveillance sensitivity for detection of asian carps in controlled and field experiments [J]. PLoS One, 2013, 8(3): e58316. doi: 10.1371/journal.pone.0058316
    [11]
    Xu N, Zhu B, Shi F, et al. Monitoring seasonal distribution of an endangered anadromous sturgeon in a large river using environmental DNA [J]. Die Naturwissenschaften, 2018, 105(11-12): 62. doi: 10.1007/s00114-018-1587-4
    [12]
    Takahara T, Minamoto T, Yamanaka H, et al. Estimation of fish biomass using environmental DNA [J]. PLoS One, 2012, 7(4): e35868. doi: 10.1371/journal.pone.0035868
    [13]
    Kelly R P, Port J A, Yamahara K M, et al. Using environmental dna to census marine fishes in a large mesocosm [J]. PLoS One, 2014, 9(1): e86175. doi: 10.1371/journal.pone.0086175
    [14]
    Jerde C L, Wilson E A, Dressler T L. Measuring global fish species richness with eDNA metabarcoding [J]. Molecular Ecology Resources, 2019, 19(1): 19-22. doi: 10.1111/1755-0998.12929
    [15]
    舒璐, 林佳艳, 徐源, 等. 基于环境DNA宏条形码的洱海鱼类多样性研究 [J]. 水生生物学报, 2020, 44(5): 7.

    Shu L, Lin J Y, Xu Y, et al. Investigating the fish diversity in Erhai Lake based on environmental dna metabarcoding [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 7.
    [16]
    Ahn H, Kume M, Terashima Y, et al. Evaluation of fish biodiversity in estuaries using environmental DNA metabarcoding [J]. PLoS One, 2020, 15(10): e0231127. doi: 10.1371/journal.pone.0231127
    [17]
    Thomsen P F, Willerslev E. Environmental DNA-An emerging tool in conservation for monitoring past and present biodiversity [J]. Biological Conservation, 2015(183): 4-18.
    [18]
    Hinlo R, Gleeson D, Lintermans M, et al. Methods to maximise recovery of environmental DNA from water samples [J]. PLoS One, 2017, 12(6): e0179251. doi: 10.1371/journal.pone.0179251
    [19]
    Deiner K, Walser J C, Mächler E, et al. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA [J]. Biological Conservation, 2015(183): 53-63.
    [20]
    Eichmiller J J, Miller L M, Sorensen P W. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish [J]. Molecular Ecology Resources, 2016, 16(1): 56-68. doi: 10.1111/1755-0998.12421
    [21]
    Spens J, Evans A R, Halfmaerten D, et al. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter [J]. Methods in Ecology and Evolution, 2016, 8(5): 635-645.
    [22]
    Djurhuus A, Port J, Closek C J, et al. Evaluation of Filtration and DNA extraction methods for environmental DNA biodiversity assessments across multiple trophic levels [J]. Frontiers in Marine Science, 2017(4): 314.
    [23]
    Renshaw M A, Olds B P, Jerde C L, et al. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroformisoamyl alcohol DNA extraction [J]. Molecular Ecology Resources, 2015, 15(1): 168-176. doi: 10.1111/1755-0998.12281
    [24]
    Liang Z, Keeley A. Filtration recovery of extracellular DNA from environmental water samples. Environmental Science & Technology, 2013. 47(16): 9324-9331.
    [25]
    赵新, 兰青阔, 陈锐, 等. 应用微滴数字PCR技术快速检测食用菌中沙门氏菌 [J]. 食品与生物技术学报, 2017, 36(3): 315-321. doi: 10.3969/j.issn.1673-1689.2017.03.014

    Zhao X, Lan Q K, Chen R, et al. Rapid detection of salmonella spp. in edible fungi by droplet digital PCR [J]. Journal of Food Science and Biotechnology, 2017, 36(3): 315-321. doi: 10.3969/j.issn.1673-1689.2017.03.014
    [26]
    Doi H, Takahara T, Minamoto T, et al. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species [J]. Environmental Science & Technology, 2015, 49(9): 5601-5608.
    [27]
    Mauvisseau Q, Davy-Bowker J, Bulling M, et al. Improving detection capabilities of a critically endangered freshwater invertebrate with environmental DNA using digital droplet PCR [J]. BioRxiv, 2019,DOI: 10.1101/661447.
    [28]
    Wood S A, Pochon X, Laroche O, et al. A comparison of droplet digital polymerase chain reaction (PCR), quantitative PCR and metabarcoding for species-specific detection in environmental DNA [J]. Molecular Ecology Resources, 2019, 19(6): 1407-1419. doi: 10.1111/1755-0998.13055
    [29]
    Whale AS, Huggett J F, Simon C, et al. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation [J]. Nucleic Acids Research, 2012, 40(11): e82. doi: 10.1093/nar/gks203
    [30]
    Hindson B J, Ness K D, Masquelier D A, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number [J]. Analytical Chemistry, 2011, 83(22): 8604-8610. doi: 10.1021/ac202028g
    [31]
    Deiner K, Altermatt F. Transport distance of invertebrate environmental DNA in a natural river [J]. PLoS One., 2014, 9(2): e88786. doi: 10.1371/journal.pone.0088786
    [32]
    Costas B A, Mcmanus G, Doherty M, et al. Use of species-specific primers and PCR to measure the distributions of planktonic ciliates in coastal waters [J]. Limnology and Oceanography Methods, 2007, 5(6): 163-173. doi: 10.4319/lom.2007.5.163
    [33]
    Aljanabi S M, Martinez I. Universal and rapid salt-extraction of high quality gnomic DNA for PCR-based techniques [J]. Nucleic Acids Research, 1997, 25(22): 4692-4693. doi: 10.1093/nar/25.22.4692
    [34]
    Coyne K J, Handy S M, Demir E, et al. Improved quantitative real-time PCR assays for enumeration of harmful algal species in field samples using an exogenous DNA reference standard [J]. Limnology and Oceanography Methods, 2005, 3(9): 381-391. doi: 10.4319/lom.2005.3.381
    [35]
    Longmire J L, Maltbie M, Baker R J. Use of 'Lysis Buffer' in DNA isolation and its implication for museum collections [J]. Occasional Papers Museum of Texas Tech University, 1997(163): 1-3.
    [36]
    Minamoto T, Naka T, Moji K, et al. Techniques for the practical collection of environmental DNA: filter selection, preservation, and extraction [J]. Limnology, 2016, 17(1): 23-32. doi: 10.1007/s10201-015-0457-4
    [37]
    Jerde C L, Chadderton W L, Mahon A R, et al. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70(4): 522-526. doi: 10.1139/cjfas-2012-0478
    [38]
    Jerde C L, Mahon A R, Chadderton W L, et al. “Sight-unseen” detection of rare aquatic species using environmental DNA [J]. Conservation Letters, 2011, 4(2): 150-157. doi: 10.1111/j.1755-263X.2010.00158.x
    [39]
    Bylemans J, Gleeson D M, Hardy C M, et al. Toward an ecoregion scale evaluation of eDNA metabarcoding primers: A case study for the freshwater fish biodiversity of the Murray-Darling Basin (Australia) [J]. Ecology and Evolution, 2018, 8(17): 8697-8712. doi: 10.1002/ece3.4387
    [40]
    Goldberg C S, Strickler K M, Pilliod D S. Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms [J]. Biological Conservation, 2015(183): 1-3. doi: 10.1016/j.biocon.2014.11.040
    [41]
    Majaneva M, Diserud O H, Eagle S H C, et al. Environmental DNA filtration techniques affect recovered biodiversity [J]. Scientific Reports, 2018, 8(1): 4682. doi: 10.1038/s41598-018-23052-8
    [42]
    汪功伟, 李浔. 深层过滤技术在生物制药工艺中的运用 [J]. 中国化工贸易, 2015(15): 151-151.

    Wang G W, Li X. Application of deep filtration technology in biopharmaceutical process [J]. China Chemical Trade, 2015(15): 151-151.
    [43]
    Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications [J]. Proceedings of the National Academy of Sciences, 1979, 76(9): 4350-4354. doi: 10.1073/pnas.76.9.4350
    [44]
    Thornton D J, Carlstedt I, Sheehan J K. Identification of glycoproteins on nitrocellulose membranes and gels [J]. Molecular Biotechnology, 1996, 5(2): 171. doi: 10.1007/BF02789065
    [45]
    Mauvisseau Q, Halfmaerten D, Sabrina N, et al. Effects of preservation strategies on environmental DNA detection and quantification using ddPCR [J]. Environmental DNA, 2021, 3(4): 815-822. doi: 10.1002/edn3.188
    [46]
    Kumar G, Eble J E, Gaither M R. A practical guide to sample preservation and pre-PCR processing of aquatic environmental DNA [J]. Molecular Ecology Resources, 2020, 20(1): 29-39. doi: 10.1111/1755-0998.13107
    [47]
    Goldberg C S, Turner C R, Deiner K, et al. Critical considerations for the application of environmental DNA methods to detect aquatic species [J]. Methods in Ecology and Evolution, 2016, 7(11): 1299-1307. doi: 10.1111/2041-210X.12595
    [48]
    Deiner K, Bik H M, Machler E, et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities [J]. Molecular Ecology, 2017, 26(21): 5872-5895. doi: 10.1111/mec.14350
    [49]
    Buxton A S, Groombridge J J, Griffiths R A. Is the detection of aquatic environmental DNA influenced by substrate type [J]? PLoS One, 2017, 12(8): e0183371. doi: 10.1371/journal.pone.0183371

Catalog

    Article views (1761) PDF downloads (196) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return