WU Xue-Yang, GUO Hong-Hui, KUANG Yu, ZHANG Ce, YANG Hui, TANG Rong, ZHANG Xi, LI Da-Peng, LI Li. ANTIOXIDANT AND NON-SPECIFIC IMMUNE RESPONSES OF FOUR SPECIES OF FISH LARVAE UNDER AMMONIA STRESS[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(8): 1237-1248. DOI: 10.7541/2022.2021.0180
Citation: WU Xue-Yang, GUO Hong-Hui, KUANG Yu, ZHANG Ce, YANG Hui, TANG Rong, ZHANG Xi, LI Da-Peng, LI Li. ANTIOXIDANT AND NON-SPECIFIC IMMUNE RESPONSES OF FOUR SPECIES OF FISH LARVAE UNDER AMMONIA STRESS[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(8): 1237-1248. DOI: 10.7541/2022.2021.0180

ANTIOXIDANT AND NON-SPECIFIC IMMUNE RESPONSES OF FOUR SPECIES OF FISH LARVAE UNDER AMMONIA STRESS

Funds: Supported by the National Key R & D Program of China (2019YFD0900303); Earmarked Fund for China Agriculture Research System (CARS-45-24); the National Natural Science Foundation of China (32071621)
  • Received Date: August 08, 2021
  • Rev Recd Date: April 19, 2022
  • Available Online: June 14, 2022
  • Published Date: August 14, 2022
  • Ammonia, a ubiquitous pollutant in the aquatic system, has been proved to be high toxic to fish. The early life state of fish is acturally more sensitive to the influence of external environmental factors than adult fish since its antioxidant and immune systems are in lower level. However, there are limited information on difference responses of different species of fish larvae to ammonia stress. Aim to explore the effects of ammonia on the antioxidant and non-specific immune response of different species of fish larvae, four different feed-habits species of fish larvae (omnivory silver carp Hypophthalmichthys molitrix, herbivorous grass carp Ctenopharyngodon idella, Wuchang bream Megalobrama amblycephala and predacity yellow catfish Pelteobagrus fulvidraco) were selected and exposed to different concentrations of total ammonia nitrogen (0, 1 mg/L, 2 mg/L and 3 mg/L) for 96h. The results showed that acute ammonia exposue caused significant decrease of body length on four species of fish larvae in a dependent-concentration manner (P<0.05). Meantime, ammonia exposure significant decreased levels of total antioxidant capacity (T-AOC), catalase (CAT) and glutathione peroxidase (GPx) in four species of fish larvae (P<0.05). Also, 2 and 3 mg/L ammonia significantly reduced the activities of superoxde dismutase (SOD) in the larves of grass carp, Wuchang bream and yellow catfish (P<0.05). As for antioxidative-related genes, significant decrease of transcriptional levels were only detected in yellow catfish gpx and silver carp sod after ammonia exposure (P<0.05). In terms of immune parmameters, ammonia exposure significantly up-regulated transcriptional levels of immune-related genes in four species of fish larvae except silver carp interleukin1β (il1β) (P<0.05). By contrast, significant decrease of lysozyme contents were observed in grass carp larvae after ammonia exposure, and significant increase of lysozyme contents were detected in yellow catfish larvae exposed to 2 mg/L ammonia (P<0.05). The results of two-way ANOVA also confirmed that ammonia could caused to varying degree changes for all parameters including antioxidant enzymes, immune indexes and immune-related gene expression in four species of fish larvae (P<0.05). There were significant differences on levels of T-AOC, CAT, GPx, C3 and the gene expression levels of cuznsod, gpx, il1β, c3 among four species of fish larvae. However, interactive effects of ammonia and species were only observed on C3 contents and the expression of genes gpx, tnfα, il1β and c3 (P<0.05). In summary, ammonia exposure caused oxidative stress, decreased the antioxidant capacities and disturbed innate immune responses in four species of fish larvae, which led to growth retardation. Among four species of fish larvae, the predacity yellow catfish was the weakest to ammonia tolerance, the herbivorous Wuchang bream and grass carp is the next, and omnivory silver carp were the strongest.
  • [1]
    Ruyet J P L, Chartois H, Quemener L. Comparative acute ammonia toxicity in marine fish and plasma ammonia response [J]. Aquaculture, 1995, 136(1-2): 181-194. doi: 10.1016/0044-8486(95)01026-2
    [2]
    Wilkie M P. Mechanisms of ammonia excretion across fish gills [J]. Comparative Biochemistry and Physiology Part A: Physiology, 1997, 118(1): 39-50. doi: 10.1016/S0300-9629(96)00407-0
    [3]
    Randall D J, Tsui T K N. Ammonia toxicity in fish [J]. Marine Pollution Bulletin, 2002, 45(1-12): 17-23. doi: 10.1016/S0025-326X(02)00227-8
    [4]
    Svobodová Z. Water quality and fish health [J]. Food and Agriculture Organization of the United Nations, 1993(54): 59.
    [5]
    Ruyet J P L, Lamers A, Roux A L, et al. Long-term ammonia exposure of turbot: effects on plasma parameters [J]. Journal of Fish Biology, 2003, 62(4): 879-894. doi: 10.1046/j.1095-8649.2003.00073.x
    [6]
    Brinkman S F, Woodling J D, Vajda A M, et al. Chronic toxicity of ammonia to early life stage rainbow trout [J]. Transactions of the American Fisheries Society, 2009, 138(2): 433-440. doi: 10.1577/T07-224.1
    [7]
    Armstrong B M, Lazorchak J M, Murphy C A, et al. Determining the effects of ammonia on fathead minnow (Pimephales promelas) reproduction [J]. Science of the Total Environment, 2012, 420: 127-133. doi: 10.1016/j.scitotenv.2012.01.005
    [8]
    Randall D J, Wright P A. Ammonia distribution and excretion in fish [J]. Fish Physiology and Biochemistry, 1987, 3(3): 107-120. doi: 10.1007/BF02180412
    [9]
    Yeong K J, Chang Y J. Effects of ammonia concentration on histological and physiological status in black seabream (Acanthopagrus schlegeli) [J]. Korean Journal of Fisheries and Aquaic Society, 1996, 29(6): 828-836.
    [10]
    Arillo A, Margiocco C, Melodia F, et al. Ammonia toxicity mechanism in fish: studies on rainbow trout (Salmo gairdneri Rich.) [J]. Ecotoxicology and Environmental Safety, 1981, 5(3): 316-328. doi: 10.1016/0147-6513(81)90006-3
    [11]
    Fromm P O, Gillette J R. Effect of ambient ammonia on blood ammonia and nitrogen excretion of rainbow trout (Salmo gairdneri) [J]. Comparative Biochemistry and Physiology, 1968, 26(3): 887-896. doi: 10.1016/0010-406X(68)90008-X
    [12]
    Hernández-Fonseca K, Cárdenas-Rodríguez N, Pedraza-Chaverri J, et al. Calcium-dependent production of reactive oxygen species is involved in neuronal damage induced during glycolysis inhibition in cultured hippocampal neurons [J]. Journal of Neuroscience Research, 2008, 86(8): 1768-1780. doi: 10.1002/jnr.21634
    [13]
    Jin L H, Bahn J H, Eum W S, et al. Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells [J]. Free Radical Biology and Medicine, 2001, 31(11): 1509-1519. doi: 10.1016/S0891-5849(01)00734-1
    [14]
    Hou J, Li L, Xue T, et al. Hepatic positive and negative antioxidant responses in zebrafish after intraperitoneal administration of toxic microcystin-LR [J]. Chemosphere, 2015(120): 729-736. doi: 10.1016/j.chemosphere.2014.09.079
    [15]
    Li M, Gong S, Li Q, et al. Ammonia toxicity induces glutamine accumulation, oxidative stress and immunosuppression in juvenile yellow catfish Pelteobagrus fulvidraco [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2016(183-184): 1-6.
    [16]
    Sun Y, Li Y, Rao J, et al. Effects of inorganic mercury exposure on histological structure, antioxidant status and immune response of immune organs in yellow catfish (Pelteobagrus fulvidraco) [J]. Journal of Applied Toxicology, 2018, 38(6): 843-854. doi: 10.1002/jat.3592
    [17]
    Hegazi M M, Attia Z I, Ashour O A. Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure [J]. Aquatic Toxicology, 2010, 99(2): 118-125. doi: 10.1016/j.aquatox.2010.04.007
    [18]
    Sinha A K, AbdElgawad H, Giblen T, et al. Anti-oxidative defences are modulated differentially in three freshwater teleosts in response to ammonia-induced oxidative stress [J]. PLoS One, 2014, 9(4): e95319. doi: 10.1371/journal.pone.0095319
    [19]
    Kim S H, Kim J H, Park M A, et al. The toxic effects of ammonia exposure on antioxidant and immune responses in Rockfish, Sebastes schlegelii during thermal stress [J]. Environmental Toxicology and Pharmacology, 2015, 40(3): 954-959. doi: 10.1016/j.etap.2015.10.006
    [20]
    Guo H, Lin W, Hou J, et al. The protective roles of dietary selenium yeast and tea polyphenols on growth performance and ammonia tolerance of juvenile Wuchang bream (Megalobrama amblycephala) [J]. Frontiers in Physiology, 2018(9): 1371. doi: 10.3389/fphys.2018.01371
    [21]
    Zhang L, Zhao Z G, Fan Q X. Effects of ammonia on growth, digestion and antioxidant capacity in juvenile yellow catfish Pelteobagrus fulvidraco (Richardson, 1846) [J]. Journal of Applied Ichthyology, 2016, 32(6): 1205-1212. doi: 10.1111/jai.13203
    [22]
    翁朝红, 谢仰杰. 环境因素对鱼类免疫功能的影响 [J]. 集美大学学报(自然科学版), 2001, 6(2): 184-189.

    Weng Z H, Xie Y J. Effects of environmental factors on fish immunity [J]. Journal of Jimei University (Natural Science), 2001, 6(2): 184-189.
    [23]
    Bowden T J. Modulation of the immune system of fish by their environment [J]. Fish & Shellfish Immunology, 2008, 25(4): 373-383.
    [24]
    覃川杰, 杨川, 陈昌福. 水温对鱼类免疫活动的影响 [J]. 河南师范大学学报(自然科学版), 2011, 39(5): 129-133.

    Qin C J, Yang C, Chen C F. Effect of environmental temperature on lmmune status of fish [J]. Journal of Henan Normal University (Natural Science Edition), 2011, 39(5): 129-133.
    [25]
    李海波, 李月红, 吉尚雷, 等. 几种环境因素对鱼类免疫机能的影响 [J]. 中国水产, 2013(9): 60-61. doi: 10.3969/j.issn.1002-6681.2013.09.021

    Li H B, Li Y H, Ji S L, et al. Effects of several environmental factors on immune function of fish [J]. China Fisheries, 2013(9): 60-61. doi: 10.3969/j.issn.1002-6681.2013.09.021
    [26]
    Liu B L, Jia R, Huang B, et al. Interactive effect of ammonia and crowding stress on ion-regulation and expression of immune-related genes in juvenile turbot (Scophthalmus maximus) [J]. Marine and Freshwater Behaviour and Physiology, 2017, 50(3): 179-194. doi: 10.1080/10236244.2017.1360726
    [27]
    Cheng C H, Yang F F, Liao S A, et al. Effect of acute ammonia exposure on expression of GH/IGF axis genes GHR1, GHR2 and IGF-1 in pufferfish (Takifugu obscurus) [J]. Fish Physiology and Biochemistry, 2015, 41(2): 495-507. doi: 10.1007/s10695-015-0025-1
    [28]
    Li S, Wang D, Liu H, et al. Expression and antimicrobial activity of c-type lysozyme in Taimen (Hucho taimen, Pallas) [J]. Developmental & Comparative Immunology, 2016, 63: 156-162.
    [29]
    Xing X, Li M, Yuan L, et al. The protective effects of taurine on acute ammonia toxicity in grass carp Ctenopharynodon idellus [J]. Fish & Shellfish Immunology, 2016, 56: 517-522.
    [30]
    Amado L L, Monserrat J M. Oxidative stress generation by microcystins in aquatic animals: why and how [J]. Environment International, 2010, 36(2): 226-235. doi: 10.1016/j.envint.2009.10.010
    [31]
    Sun H, Yang W, Chen Y, et al. Effect of purified microcystin on oxidative stress of silver carp Hypophthalmichthys molitrix, larvae under different ammonia concentrations [J]. Biochemical Systematics and Ecology, 2011, 39(4-6): 536-543. doi: 10.1016/j.bse.2011.08.001
    [32]
    Emerson K, Russo R C, Lund R E, et al. Aqueous ammonia equilibrium calculations: effect of pH and temperature [J]. Journal of the Fisheries Research Board of Canada, 1975, 32(12): 2379-2383. doi: 10.1139/f75-274
    [33]
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ CT method [J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
    [34]
    蒋菁菁. 鲢补体C7和白细胞介素-1β基因的克隆、表达及序列分析 [D]. 重庆: 重庆师范大学, 2012.

    Jiang J J. Molecular cloning and genetic diversity analysis of the seventh component of complement and interleukin- in Hypophthalmichthys molitrix [D]. Chongqing: Chongqing Normal University, 2012.
    [35]
    Foss A, Imsland A K, Roth B, et al. Effects of chronic and periodic exposure to ammonia on growth and blood physiology in juvenile turbot (Scophthalmus maximus) [J]. Aquaculture, 2009, 296(1-2): 45-50. doi: 10.1016/j.aquaculture.2009.07.013
    [36]
    El-Greisy Z A E B, Elgamal A E E, Ahmed N A M. Effect of prolonged ammonia toxicity on fertilized eggs, hatchability and size of newly hatched larvae of Nile tilapia, Oreochromis niloticus [J]. The Egyptian Journal of Aquatic Research, 2016, 42(2): 215-222. doi: 10.1016/j.ejar.2016.04.001
    [37]
    Segner H, Verreth J. Metabolic enzyme activities in larvae of the African catfish, Clarias gariepinus: changes in relation to age and nutrition [J]. Fish Physiology and Biochemistry, 1995, 14(5): 385-398. doi: 10.1007/BF00003376
    [38]
    Cousin J C B, Laurencin F B. Morphogenèse de l’appareil digestif et de la vessie gazeuse du turbot, Scophthalmus maximus L. [J]. Aquaculture, 1985, 47(4): 305-319. doi: 10.1016/0044-8486(85)90216-9
    [39]
    Pittman K, Skiftesvik A B, Berg L. Morphological and behavioural development of halibut, Hippoglossus hippoglossus (L.) larvae [J]. Journal of Fish Biology, 1990, 37(3): 455-472. doi: 10.1111/j.1095-8649.1990.tb05876.x
    [40]
    Ching B, Chew S F, Wong W P, et al. Environmental ammonia exposure induces oxidative stress in gills and brain of Boleophthalmus boddarti (Mudskipper) [J]. Aquatic Toxicology, 2009, 95(3): 203-212. doi: 10.1016/j.aquatox.2009.09.004
    [41]
    Jia R, Cao L P, Du J L, et al. Effects of carbon tetrachloride on oxidative stress, inflammatory response and hepatocyte apoptosis in common carp (Cyprinus carpio) [J]. Aquatic Toxicology, 2014(152): 11-19. doi: 10.1016/j.aquatox.2014.02.014
    [42]
    Jia R, Han C, Lei J L, et al. Effects of nitrite exposure on haematological parameters, oxidative stress and apoptosis in juvenile turbot (Scophthalmus maximus) [J]. Aquatic Toxicology, 2015(169): 1-9. doi: 10.1016/j.aquatox.2015.09.016
    [43]
    Giera M, Lingeman H, Niessen W M A. Recent advancements in the LC-and GC-based analysis of malondialdehyde (MDA): a brief overview [J]. Chromatographia, 2012, 75(9-10): 433-440. doi: 10.1007/s10337-012-2237-1
    [44]
    高春生, 王春秀, 张书松. 水体铜对黄河鲤肝胰脏抗氧化酶活性和总抗氧化能力的影响 [J]. 农业环境科学学报, 2008, 27(3): 1157-1162. doi: 10.3321/j.issn:1672-2043.2008.03.055

    Gao C S, Wang C X, Zhang S S. Effects of copper on activities of antioxidant enzymes and total antioxidative competence in hepatopancreas of Cyprinus carpio [J]. Journal of Agro-Environment Science, 2008, 27(3): 1157-1162. doi: 10.3321/j.issn:1672-2043.2008.03.055
    [45]
    Sinha A K, Zinta G, AbdElgawad H, et al. High environmental ammonia elicits differential oxidative stress and antioxidant responses in five different organs of a model estuarine teleost (Dicentrarchus labrax) [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2015, 174-175: 21-31.
    [46]
    Stephensen E, Sturve J, Förlin L. Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2002, 133(3): 435-442.
    [47]
    Eyckmans M, Celis N, Horemans N, et al. Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species [J]. Aquatic Toxicology, 2011, 103(1-2): 112-120. doi: 10.1016/j.aquatox.2011.02.010
    [48]
    王咏梅. 自由基与谷胱甘肽过氧化物酶 [J]. 解放军药学学报, 2005, 21(5): 369-371.

    Wang Y M. Free radicals and glutathione peroxidase [J]. Pharmaceutical Journal of PLA, 2005, 21(5): 369-371.
    [49]
    Chen Y, Sun H, Yang W, et al. Incubation and oxidative stress of grass carp (Ctenopharyngodon idella) embryos exposed to different un-ionized ammonia levels [J]. Journal of Freshwater Ecology, 2012, 27(1): 143-150.
    [50]
    Zhang W, Xia S, Zhu J, et al. Growth performance, physiological response and histology changes of juvenile blunt snout bream, Megalobrama amblycephala exposed to chronic ammonia [J]. Aquaculture, 2019(506): 424-436. doi: 10.1016/j.aquaculture.2019.03.072
    [51]
    McCord J M, Fridovich I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein) [J]. Journal of Biological Chemistry, 1969, 244(22): 6049-6055. doi: 10.1016/S0021-9258(18)63504-5
    [52]
    Krinsky N I. Mechanism of action of biological antioxidants [J]. Experimental Biology and Medicine, 1992, 200(2): 248-254. doi: 10.3181/00379727-200-43429
    [53]
    周龙艳, 李秀明, 付世建. 捕食驯化对胭脂鱼和中华倒刺鲃游泳行为、应激和免疫功能的影响 [J]. 水生生物学报, 2021, 45(5): 1112-1119. doi: 10.7541/2021.2020.015

    Zhou L Y, Li X M, Fu S J. The effect of predation acclimation on swimming behavior, stress and immune responses of juvenile Myxocyprinus asiaticus and Spinibarbus sinensis [J]. Acta Hydrobiologica Sinica, 2021, 45(5): 1112-1119. doi: 10.7541/2021.2020.015
    [54]
    姜丹莉. 四种不同食性的温水鱼类应激反应及其对糖代谢的影响 [D]. 杭州: 浙江大学, 2017.

    Jiang D L. Stress response in four warmwater fish species with different food habits and its effect on glycometabolism [D]. Hangzhou: Zhejiang University, 2017.
    [55]
    王梦杰, 马本贺, 王玮欣, 等. 慢性氨氮胁迫对台湾泥鳅幼鱼生长、免疫及组织结构的影响 [J]. 水生生物学报, 2021, 45(2): 267-274. doi: 10.7541/2021.2019.281

    Wang M J, Ma B H, Wang W X, et al. Effects of chronic ammonia stress on growth, immunity and histological structure of juvenile Taiwan loach (Paramisgurnus dabryanus ssp. Taiwan) [J]. Acta Hydrobiologica Sinica, 2021, 45(2): 267-274. doi: 10.7541/2021.2019.281
    [56]
    Parkin J, Cohen B. An overview of the immune system [J]. Lancet, 2001, 357(9270): 1777-1789. doi: 10.1016/S0140-6736(00)04904-7
    [57]
    Saurabh S, Sahoo P K. Lysozyme: an important defence molecule of fish innate immune system [J]. Aquaculture Research, 2008, 39(3): 223-239. doi: 10.1111/j.1365-2109.2007.01883.x
    [58]
    Holland M C H, Lambris J D. The complement system in teleosts [J]. Fish & Shellfish Immunology, 2002, 12(5): 399-420.
    [59]
    Lin W, Guo H, Wang L, et al. Nitrite enhances MC-LR-induced changes on splenic oxidation resistance and innate immunity in male zebrafish [J]. Toxins, 2018, 10(12): 512. doi: 10.3390/toxins10120512
    [60]
    章琼. 团头鲂g型溶菌酶和caspase家族基因的全长cDNA克隆及在氨氮胁迫下的表达分析 [D]. 南京: 南京农业大学, 2015.

    Zhang Q. Molecular cloning of G-type lysozyme and caspase family gene from blout snout bream (Megahbrama amblycephala) and it’s expression analysis under ammonia-N stress [D]. Nanjing: Nanjing Agricultural University, 2015.
    [61]
    Qin C J, Shao T, Wang Y M, et al. Effect of ammonia-N on histology and expression of immunoglobulin M and component C3 in the spleen and head kidney of Pelteobagrus vachellii [J]. Aquaculture Reports, 2017(8): 16-20. doi: 10.1016/j.aqrep.2017.08.001
    [62]
    黎庆, 龚诗雁, 黎明. 慢性氨氮暴露诱发黄颡鱼幼鱼谷氨酰胺积累、氧化损伤及免疫抑制的研究 [J]. 水产学报, 2015, 39(5): 728-734.

    Li Q, Gong S Y, Li M. Chronic ammonia toxicity induces glutamine accumulation, oxidative damage and immunosuppression of juvenile yellow catfish Pelteobagrus fulvidraco [J]. Journal of Fisheries of China, 2015, 39(5): 728-734.
    [63]
    崔红红, 刘波, 戈贤平, 等. 肌醇对氨氮应激下团头鲂幼鱼免疫的影响 [J]. 水产学报, 2014, 38(2): 228-236.

    Cui H H, Liu B, Ge X P, et al. Effects of dietary inositol on immune function of juvenile Wuchang bream under ammonia stress [J]. Journal of Fisheries of China, 2014, 38(2): 228-236.
    [64]
    梁健. α-酮戊二酸对草鱼氨氮胁迫的缓解作用研究 [D]. 长沙: 湖南农业大学, 2014.

    Liang J. Studies of α-ketoglutarate on alleviating ammonia nitrogen stress of Ctenopharyngodon idellus [D]. Changsha: Hunan Agricultural University, 2014.
    [65]
    高珊, 余涛, 周景祥, 等. 鱼类白介素及其受体的研究 [J]. 水产学杂志, 2014, 27(3): 62-64. doi: 10.3969/j.issn.1005-3832.2014.03.014

    Gao S, Yu T, Zhou J X, et al. A review of interleukin and receptors in fish [J]. Chinese Journal of Fisheries, 2014, 27(3): 62-64. doi: 10.3969/j.issn.1005-3832.2014.03.014
    [66]
    Sigh J, Lindenstrøm T, Buchmann K. Expression of pro-inflammatory cytokines in rainbow trout (Oncorhynchus mykiss) during an infection with Ichthyophthirius multifiliis [J]. Fish & Shellfish Immunology, 2004, 17(1): 75-86.
    [67]
    Zambon C F, Basso D, Navaglia F, et al. Pro-and anti-inflammatory cytokines gene polymorphisms and Helicobacter pylori infection: interactions influence outcome [J]. Cytokine, 2005, 29(4): 141-152. doi: 10.1016/j.cyto.2004.10.013
    [68]
    Illi J, Miaskowski C, Cooper B, et al. Association between pro-and anti-inflammatory cytokine genes and a symptom cluster of pain, fatigue, sleep disturbance, and depression [J]. Cytokine, 2012, 58(3): 437-447. doi: 10.1016/j.cyto.2012.02.015
    [69]
    Qi X Z, Xue M Y, Yang S B, et al. Ammonia exposure alters the expression of immune-related and antioxidant enzymes-related genes and the gut microbial community of crucian carp (Carassius auratus) [J]. Fish & Shellfish Immunology, 2017(70): 485-492.
    [70]
    Cheng C H, Yang F F, Ling R Z, et al. Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus) [J]. Aquatic Toxicology, 2015(164): 61-71. doi: 10.1016/j.aquatox.2015.04.004
    [71]
    刘雨, 丁炜东, 曹哲明, 等. 急性氨氮胁迫对翘嘴鳜幼鱼抗氧化酶活性及炎症反应相关基因表达的影响 [J]. 南方农业学报, 2019, 50(8): 1860-1868. doi: 10.3969/j.issn.2095-1191.2019.08.29

    Liu Y, Ding W D, Cao Z M, et al. Effects of acute ammonia nitrogen stress on antioxidant enzymes activity and gene expression involved in inflammation of juvenile Siniperca chuatsi [J]. Journal of Southern Agriculture, 2019, 50(8): 1860-1868. doi: 10.3969/j.issn.2095-1191.2019.08.29
    [72]
    李冰, 张木子, 黎明, 等. 急性氨氮毒性对黄颡鱼头肾巨噬细胞抗氧化及炎症相关基因表达的影响 [J]. 水产学报, 2018, 42(12): 1889-1895.

    Li B, Zhang M Z, Li M, et al. Effect of acute ammonia toxicity on genes involved in antioxidant and inflammation in head kidney macrophage of Pelteobagrus fulvidraco [J]. Journal of Fisheries of China, 2018, 42(12): 1889-1895.

Catalog

    Article views (1304) PDF downloads (98) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return