YANG Ting-Yue, YU Dan, GAO Xin, LIU Huan-Zhang. MECHANISM OF FISH COMMUNITY ASSEMBLY IN MIDDLE REACHES OF THE YANGTZE RIVER[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(5): 1045-1054. DOI: 10.7541/2020.121
Citation: YANG Ting-Yue, YU Dan, GAO Xin, LIU Huan-Zhang. MECHANISM OF FISH COMMUNITY ASSEMBLY IN MIDDLE REACHES OF THE YANGTZE RIVER[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(5): 1045-1054. DOI: 10.7541/2020.121

MECHANISM OF FISH COMMUNITY ASSEMBLY IN MIDDLE REACHES OF THE YANGTZE RIVER

Funds: Supported by the National Key Research and Development Program of China (2016YFC0402005); The Follow-up Work of the Three Gorges Project (2136902); The Open Project of Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes (SXSN/4381); Sino BON - Inland Water Fish Diversity Observation Network
  • Received Date: September 05, 2019
  • Rev Recd Date: March 14, 2020
  • Available Online: August 19, 2020
  • Published Date: September 29, 2020
  • Community assembly mechanisms have long been a central issue in ecology. Three mechanisms have been proposed to govern community assembly: neutral process, competitive interaction, and environmental filtering. To explore the assembly mechanism of fish communities in the middle reaches of the Yangtze River, we collected fish samples from 5 reaches (Yichang, Zhijiang, Jingzhou, Hannan, Hukou) and conducted a series of analysis including phylogenetic community structure analysis. The results showed that: (1) spatial clustering analysis revealed that all sampling reaches were identified as 3 groups (Yichang, Zhijiang + Jingzhou, Hannan + Hukou) with a similarity level of 65% or 2 groups (Yichang, Zhijiang + Jingzhou + Hannan + Hukou) with the similarity level of 55%. These groupings were consistent with the spatial distribution of the sampling reaches; (2) The assembly mechanisms of fish communities were distinct at different spatial scales. At local scale, competitive interaction drove the fish community assembly in Jingzhou sampling reach, while environmental filtering drove the fish communities assembly in other sampling reaches. At regional scale, environmental filtering structured the fish community in Yichang sampling reach, while interspecific competition structured the fish communities in the other 4 sampling reaches. Therefore, the local environment and spatial scales play a role simultaneously during fish community assembly in the middle reaches of the Yangtze River. The fish community in Yichang reach is structured by environmental filtering, which may be due to the swift current there. In other reaches, environmental filtering drove the fish community assembly at local scale, while competitive interaction played key role at regional scale. This may be because as spatial heterogeneity increases, distantly related species were contained in the community assemblage. This phenomenon is different from those in terrestrial plant communities, where the assembly mechanism has changed from small-scale competitive interaction to large-scale environmental filtering.
  • [1]
    Rosindell J, Hubbell S P, Etienne R S. The unified neutral theory of biodiversity and biogeography at age ten [J]. Trends in Ecology & Evolution, 2011, 26(7): 340-348.
    [2]
    Roughgarden J. Competition and theory in community ecology [J]. The American Naturalist, 1983, 122(5): 583-601. doi: 10.1086/284160
    [3]
    Tilman D. Competition and biodiversity in spatially structured habitats [J]. Ecology, 1994, 75(1): 2-16. doi: 10.2307/1939377
    [4]
    Tilman D. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 10854-10861. doi: 10.1073/pnas.0403458101
    [5]
    Weiher E, Keddy P A. Assembly rules, null models, and trait dispersion: new questions from old patterns [J]. Oikos, 1995, 74(1): 159-164. doi: 10.2307/3545686
    [6]
    Nathan J B, Kraft, David D, Ackerly. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest [J]. Ecological Monographs, 2010, 80(3): 401-422. doi: 10.1890/09-1672.1
    [7]
    Hubbell S P. The Unified Neutral Theory of Biodiversity and Biogeography [M]. Princeton: Princeton University Press, 2001: 70-82
    [8]
    Leibold M A. Similarity and local coexistence of species in regional biotas [J]. Evolutionary Ecology, 1998, 12(1): 95-110. doi: 10.1023/A:1006511124428
    [9]
    Macarthur R H, Levins R. The limiting similarity, convergence, and divergence of coexisting species [J]. The American Naturalist, 1967, 101(921): 377-385. doi: 10.1086/282505
    [10]
    Weiher E, Clarke G D, Keddy P A, et al. Community assembly rules, morphological dispersion, and the coexistence of Plant Species [J]. Oikos, 1998, 81(2): 309-322. doi: 10.2307/3547051
    [11]
    牛红玉, 王峥峰, 练琚愉, 等. 群落构建研究的新进展: 进化和生态相结合的群落谱系结构研究 [J]. 生物多样性, 2011, 19(3): 275-283. doi: 10.3724/SP.J.1003.2011.09275

    Niu H Y, Wang Z F, Lian J Y, et al. New progress in community assembly: community phylogenetic structure combining evolution and ecology [J]. Biodiversity Science, 2011, 19(3): 275-283. doi: 10.3724/SP.J.1003.2011.09275
    [12]
    卢孟孟, 黄小翠, 慈秀芹, 等. 沿海拔梯度变化的哀牢山亚热带森林群落系统发育结构 [J]. 生物多样性, 2014, 22(4): 438-448. doi: 10.3724/SP.J.1003.2014.14011

    Lu M M, Huang X C, Ci X Q, et al. Phylogenetic community structure of subtropical forests along elevational gradients in Ailao Mountains of southwest China [J]. Biodiversity Science, 2014, 22(4): 438-448. doi: 10.3724/SP.J.1003.2014.14011
    [13]
    Swenson N G, Enquist B J, Pither J, et al. The problem and promise of scale dependency in community phylogenetics [J]. Ecology, 2006, 87(10): 2418-2424. doi: 10.1890/0012-9658(2006)87[2418:TPAPOS]2.0.CO;2
    [14]
    Vamosi S M, Heard S B, Vamosi J C, et al. Emerging patterns in the comparative analysis of phylogenetic community structure [J]. Molecular Ecology, 2009, 18(4): 572-592. doi: 10.1111/j.1365-294X.2008.04001.x
    [15]
    Cavender-Bares J, Keen A, Miles B. Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale [J]. Ecology, 2006, 87(7): 109-122.
    [16]
    陈锋, 黄道明, 赵先富, 等. 新时代长江鱼类多样性保护的思考 [J]. 人民长江, 2019, 50(2): 13-18.

    Chen F, Huang D M, Zhao X F, et al. Thinking on protection of fish diversity in Yangtze River in new era [J]. Yangtze River, 2019, 50(2): 13-18.
    [17]
    曹文宣. 长江上游水电梯级开发的水域生态保护问题 [J]. 长江技术经济, 2017, 1(1): 25-30.

    Cao W X. Ecological protection of hydropower cascade development in the upper reaches of the Yangtze River [J]. Yangtze River Technical Economy, 2017, 1(1): 25-30.
    [18]
    易雨君. 长江水沙环境变化对鱼类的影响及栖息地数值模拟 [D]. 北京: 清华大学, 2008: 10-13

    Yi Y J. Impacts of changing flow and sediment on fish and habitat modeling of the Yangtze River [D]. Beijing: Tsinghua University, 2008: 3-10
    [19]
    于晓东, 罗天宏, 周红章. 长江流域鱼类物种多样性大尺度格局研究 [J]. 生物多样性, 2005, 13(6): 473-495. doi: 10.3321/j.issn:1005-0094.2005.06.001

    Yu X D, Luo T H, Zhou H Z. Large-scale patterns in species diversity of fishes in the Yangzte River Basin [J]. Biodiversity Science, 2005, 13(6): 473-495. doi: 10.3321/j.issn:1005-0094.2005.06.001
    [20]
    孙明帅. 长江中游城陵矶至宜昌江段鱼群密度分布特征研究 [D]. 武汉: 华中农业大学, 2013: 1-2

    Sun M S. Studies on the density distribution of fishes in the section from Chenglingji to Yichang of the Yangtze River middle reaches [D]. Wuhan: Huangzhong Agricultural University, 2013: 1-2
    [21]
    陈大庆, 段辛斌, 刘绍平, 等. 长江渔业资源变动和管理对策 [J]. 水生生物学报, 2002, 26(6): 685-690. doi: 10.3321/j.issn:1000-3207.2002.06.018

    Chen D Q, Duan X B, Liu S P, et al. On the dynamics of fishery resources of the Yangtze River and its management [J]. Acta Hydrobiologica Sinica, 2002, 26(6): 685-690. doi: 10.3321/j.issn:1000-3207.2002.06.018
    [22]
    陈宜瑜. 中国动物志·硬骨鱼纲·鲤形目 (中卷) [M]. 北京: 科学出版社, 1998: 46-444

    Chen Y Y. Fauna Sinica, Osteichthyes, Cypriniformes Ⅱ [M]. Beijing: Science Press, 1998: 46-444
    [23]
    乐佩琦. 中国动物志·硬骨鱼纲·鲤形目 (下卷) [M]. 北京: 科学出版社, 2000: 399-427

    Yue P Q. Fauna Sinica, Osteichthyes, Cypriniformes Ⅲ [M]. Beijing: Science Press, 2000: 399-427
    [24]
    褚新洛. 中国动物志·硬骨鱼纲·鲇形目 [M]. 北京: 科学出版社, 1999, 35-86

    Chu X L. Fauna Sinica, Osteichthyes, Siluriformes [M]. Beijing: Science Press, 1999, 35-86
    [25]
    张世义. 中国动物志·硬骨鱼纲·鲟形目海鲢目鲱形目鼠鱚目 [M]. 北京: 科学出版社, 2001: 30-32

    Zhang S Y. Fauna Sinica, Osteichthyes, Acipenseriformes, Elopiformes, Clupeiformes, Gonorhynchiformes [M]. Beijing: Science Press, 2001: 30-32
    [26]
    伍汉霖. 中国动物志·硬骨鱼纲·鲈形目(五)·虾虎鱼亚目 [M]. 北京: 科学出版社, 2007: 142-145, 594-599

    Wu H L. Fauna Sinica, Osteichthyes, PerciformesⅤ, Gobioidei [M]. Beijing: Science Press, 2007: 142-145, 594-599
    [27]
    张春光. 中国内陆鱼类物种与分布 [M]. 北京: 科学技术出版社, 2016: 192-208

    Zhang C G. Species Diversity and Distribution of Inland Fishes in China [M]. Beijing: Science Press, 2016: 192-208
    [28]
    Xiao W H, Zhang Y P, Liu H Z. Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia [J]. Molecular Phylogenetics and Evolution, 2001, 18(2): 163-173. doi: 10.1006/mpev.2000.0879
    [29]
    Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research, 1997(25): 4876-4882.
    [30]
    Galtier N, Gouy N. SEVIEW and PHYLOWIN: Two graphic tools for sequence alignment and molecular phylogeny [J]. Computer Applications in the Biosciences, 1996, 12(6): 543-548.
    [31]
    Tamura K, Peterson D, Peterson N, et al. Mega 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739. doi: 10.1093/molbev/msr121
    [32]
    Clarke K R, Warwick R M. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation (2nd edition) [M]. Plymouth: Plymouth Marine Laboratory, 2001: 62-81
    [33]
    Webb C O, Ackerly D D, McPeek M A, et al. Phylogenies and community ecology [J]. Annual Review of Ecology and Systematics, 2002(33): 475-505.
    [34]
    李培坤, 王雪颖, 王婷, 等. 基于不同模型分析白云山落叶阔叶林群落系统发育结构及其构建机制 [J]. 河南农业大学学报, 2018, 52(1): 50-58.

    Li K K, Wang X Y, Wang T, et al. Analysis on the construction and community phylogenetic structure of deciduous broad-leaved forest community in Baiyunshan nature reserve based on different models [J]. Journal of Henan Agricultural University, 2018, 52(1): 50-58.
    [35]
    Rahel F J. Hubert W A Fish assemblages and habitat gradients in a rocky-mountain great-plains stream-biotic zonation and additive patterns of community change [J]. Transactions of the American Fisheries Society, 1991(120): 319-332.
    [36]
    Gao X, Fujiwara M, Winemiller K O, et al. Regime shift in fish assemblage structure in the Yangtze River following construction of the Three Gorges Dam [J]. Scientific Reports, 2019, 9(1): 4212-4214. doi: 10.1038/s41598-019-38993-x
    [37]
    王生, 段辛斌, 陈文静, 等. 鄱阳湖湖口鱼类资源现状调查 [J]. 淡水渔业, 2016, 46(6): 50-55. doi: 10.3969/j.issn.1000-6907.2016.06.009

    Wang S, Duan X B, Chen W J, et al. Status and changes of fish resources in the Hukou area of Poyang Lake [J]. Freshwater Fisheries, 2016, 46(6): 50-55. doi: 10.3969/j.issn.1000-6907.2016.06.009
    [38]
    Hubert N, Paradis E, Bruggemann J H, et al. Community assembly and diversification in Indo-Pacific coral reef fishes [J]. Ecology and Evolution, 2011, 1(3): 229-277. doi: 10.1002/ece3.19
    [39]
    Kembel S W, Hubbell S P. The phylogenetic structure of a neotropical forest tree community [J]. Ecology, 2006, 87(7): 86-99.
    [40]
    Gaston K J. Global patterns in biodiversity [J]. Nature, 2000, 405(6783): 220-227. doi: 10.1038/35012228

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return