Citation: | YU Fei-Fei, WU Jin-Xian, ZHONG Zhi-Ming, LIANG Qi-Wen, LIU Yong. VALPROIC ACID ENHANCES MELANIN SYNTHESIS BY Mitf PATHWAY IN PTERIA PENGUIN[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(5): 1105-1110. DOI: 10.7541/2020.128 |
[1] |
Yu F F, Tang X Y, Qu B L, et al. Kojic acid inhibited melanin synthesis by tyrosinase pathway in Pteria penguin [J]. Aquaculture Research, 2020, 51(4): 1584-1591. doi: 10.1111/are.14505
|
[2] |
Dai X F, Yin Y H, Qin L Y. Valproic acid exposure decreases the mRNA stability of Bcl-2 via up-regulating miR-34a in the cerebellum of rat [J]. Neuroscience Letters, 2017, 657(14): 159-165.
|
[3] |
Shirsatha N, Rathosa M, Chaudharia U, et al. Potentiation of anticancer effect of valproic acid, an antiepileptic agent with histone deacetylase inhibitory activity, by the cyclin-dependent kinase inhibitor P276-00 in human non-small-cell lung cancer cell lines [J]. Lung Cancer, 2013, 82(2): 214-221. doi: 10.1016/j.lungcan.2013.08.010
|
[4] |
Makarevi’c J, Rutz J, Juengel E, et al. Influence of the HDAC inhibitor valproic acid on the growth and proliferation of temsirolimus-resistant prostate cancer cells in vitro [J]. Cancers, 2019, 11(4): 566. doi: 10.3390/cancers11040566
|
[5] |
Chodurek E, Orchel A, Orchel J, et al. Evaluation of melanogenesis in A-375 melanoma cells treated with 5, 7-dimethoxycoumarin and valproic acid [J]. Cellular & Molecular Biology Letters, 2012, 17(4): 616-632.
|
[6] |
Zdybel M, Chodurek E, Pilawa B. EPR studies of free radicals in A-2058 human melanoma cells treated by valproic acid and 5, 7-dimethoxycoumarin [J]. Acta Poloniae Pharmaceutica, 2014, 71(6): 1066-1072.
|
[7] |
于非非, 宋娜娜, 王梅芳, 等. 熊果苷和丙戊酸影响企鹅珍珠贝(Pteria penguin)贝壳色泽 [J]. 基因组学与应用生物学, 2016, 35(6): 1409-1414.
Yu F F, Song N N, Wang M F, et al. Arbutin and valproic acid affect the shell color of Pteria penguin [J]. Genomics and Applied Biology, 2016, 35(6): 1409-1414.
|
[8] |
Cheli Y, Ohanna M, Ballotti R, et al. Fifteen-year quest for microphthalmia-associated transcription factor target genes [J]. Pigment Cell & Melanoma Research, 2010, 23(1): 27-40.
|
[9] |
Maranduca M A, Branisteanu D, Serban D N, et al. Synthesis and physiological implications of melanic pigments [J]. Oncology Letters, 2019, 17(5): 4183-4187.
|
[10] |
Yu F F, Pan Z N, Qu B L, et al. Identification of a tyrosinase gene and its functional analysis in melaninsynthesis of Pteria penguin [J]. Gene, 2018(656): 1-8.
|
[11] |
Yu F F, Qu B L, Lin D D, et al. Pax3 gene regulated melanin synthesis by Tyrosinase pathway in Pteria penguin [J]. International Journal of Molecular Sciences, 2018, 19(12): 3700. doi: 10.3390/ijms19123700
|
[12] |
Ito S, Nakanishi Y, Valenzuela R K, et al. Usefulness of alkaline hydrogen peroxide oxidation to analyze eumelanin and pheomelanin in various tissue samples: application to chemical analysis of human hair melanins [J]. Pigment Cell & Melanoma Research, 2011, 24(4): 605-613.
|
[13] |
Ito S, Wakamatsu K, Glass K, et al. High-performance liquid chromatography estimation of cross-linking of dihydroxyindole moiety in eumelanin [J]. Analytical Biochemistry, 2013, 434(2): 221-225. doi: 10.1016/j.ab.2012.12.005
|
[14] |
Kim K I, Jo J W, Lee J H, et al. Induction of pigmentation by a small molecule tyrosine kinase inhibitor nilotinib [J]. Biochemical and Biophysical Research Communications, 2018, 503(4): 2271-2276. doi: 10.1016/j.bbrc.2018.06.148
|
[15] |
Choi Y K, Rho Y K, YooK H, et al. Effects of vitamin C vs. multivitamin on melanogenesis: Comparative study in vitro and in vivo [J]. International Journal of Dermatology, 2010, 49(2): 218-226. doi: 10.1111/j.1365-4632.2009.04336.x
|
[16] |
叶元土, 吴萍, 蔡春芳, 等. 灌喂氧化鱼油后黄颡鱼胃肠道黏膜黑色素细胞分化和黑色素合成途径基因的差异表达 [J]. 水生生物学报, 2018, 42(1): 57-67. doi: 10.7541/2018.008
Ye Y T, Wu P, Cai C F, et al. The melanin synthesis metabolic pathway in the gastrointestinal mucosa of yellow catfish (Pelteobagrus fulvidraco) fed oxidized fish oil [J]. Acta Hydrobiologica Sinica, 2018, 42(1): 57-67. doi: 10.7541/2018.008
|
[17] |
Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, et al. Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors [J]. Cancer Treatment Reviews, 2008, 34(3): 206-222. doi: 10.1016/j.ctrv.2007.11.003
|
[18] |
Yun C Y, Roh E, Kim S H, et al. stem cell factor-inducible MITF-M expression in therapeutics for acquired skin hyperpigmentation [J]. Theranostics, 2020, 10(1): 340-352. doi: 10.7150/thno.39066
|
[19] |
Hejna M, Moon W M, Cheng J, et al. Local genomic features predict the distinct and overlapping binding patterns of the bHLH-zip family oncoproteins MITF and MYC–MAX [J]. Pigment Cell & Melanoma Research, 2019, 32(4): 500-509.
|
[20] |
Alves C P, Yokoyama S, Goedert L, et al. MYO5A gene is a target of MITF in melanocytes [J]. The Journal of Investigative Dermatology, 2017, 137(4): 985-989. doi: 10.1016/j.jid.2016.11.026
|
[21] |
Kalkavan H, Green D R. MOMP, cell suicide as a BCL-2 family business [J]. Cell Death and Differentiation, 2018, 25(1): 46-55. doi: 10.1038/cdd.2017.179
|
[22] |
McGill G G, Horstmann M, Widlund H R, et al. Bcl2 regulation by the melanocyte master regulator mitf modulates lineage survival and melanoma cell viability [J]. Cell, 2002, 109(6): 707-718. doi: 10.1016/S0092-8674(02)00762-6
|
[23] |
Kang B, Kim Y, Park T J, et al. Dasatinib, a second-generation tyrosine kinase inhibitor, induces melanogenesis via ERK-CREB-MITF-tyrosinase signaling in normal human melanocytes [J]. Biochemical and Biophysical Research Communications, 2020, 523(4): 1034-1039. doi: 10.1016/j.bbrc.2020.01.051
|
[24] |
Sato K, Ando R, Kobayashi H, et al. 2-Ethoxybenzamide stimulates melanin synthesis in B16F1 melanoma cells via the CREB signaling pathway [J]. Molecular and Cellular Biochemistry, 2016, 423(1-2): 39-52. doi: 10.1007/s11010-016-2823-x
|
[25] |
Lin X P, Feng L, Xie C G, et al. Valproic acid attenuates the suppression of acetyl histone H3 and CREB activity in an inducible cell model of Machado–Joseph disease [J]. International Journal of Developmental Neuroscience, 2014, 38(1): 17-22. doi: 10.1016/j.ijdevneu.2014.07.004
|