Citation: | HUANG Jiao-Long, LIU Xia-Wei, HUANG Man-Qi, BAO Shao-Pan, TANG Wei, FANG Tao. THE RELEASE OF SEDIMENT-ASSOCIATED SILVER NANOPARTICLES BY HUMIC ACID AND ITS TOXICITY ON ZEBRAFISH[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(5): 1119-1129. DOI: 10.7541/2020.130 |
[1] |
Wasmuth C, Rudel H, During R A, et al. Assessing the suitability of the OECD 29 guidance document to investigate the transformation and dissolution of silver nanoparticles in aqueous media [J]. Chemosphere, 2016(144): 2018-2023.
|
[2] |
Ravi S S, Christena L R, Saisubramanian N, et al. Green synthesized silver nanoparticles for selective colorimetric sensing of Hg2+ in aqueous solution at wide pH range [J]. Analyst, 2013, 138(15): 4370-4377. doi: 10.1039/c3an00320e
|
[3] |
Mcgillicuddy E, Murray I, Kavanagh S, et al. Silver nanoparticles in the environment: Sources, detection and ecotoxicology [J]. Science of Total Environment, 2017(575): 231-246.
|
[4] |
Gupta S D, Agarwal A, Pradhan S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns [J]. Ecotoxicology and Environment Safety, 2018(161): 624-633.
|
[5] |
Zhang L, Wang W X. Dominant role of silver ions in silver nanoparticle toxicity to a unicellular alga: evidence from luminogen imaging [J]. Environmental Science & Technology, 2019, 53(1): 494-502.
|
[6] |
Zhang W, Ke S, Sun C, et al. Fate and toxicity of silver nanoparticles in freshwater from laboratory to realistic environments: a review [J]. Environmental Science and Pollution Research, 2019, 26(8): 7390-7404. doi: 10.1007/s11356-019-04150-0
|
[7] |
Batley G E, Kirby J K, Mclaughlin M J. Fate and risks of nanomaterials in aquatic and terrestrial environments [J]. Accounts of Chemical Research, 2013, 46(3): 854-862. doi: 10.1021/ar2003368
|
[8] |
Miao L, Wang C, Hou J, et al. Influence of silver nanoparticles on benthic oxygen consumption of microbial communities in freshwater sediments determined by microelectrodes [J]. Environmental Pollution, 2017(224): 771-778.
|
[9] |
Wang H, Ho K T, Scheckel K G, et al. Toxicity, bioaccumulation, and biotransformation of silver nanoparticles in marine organisms [J]. Environmental Science & Technology, 2014, 48(23): 13711-13717.
|
[10] |
Bao S, Huang J, Liu X, et al. Tissue distribution of Ag and oxidative stress responses in the freshwater snail Bellamya aeruginosa exposed to sediment-associated Ag nanoparticles [J]. Science of Total Environment, 2018(644): 736-746.
|
[11] |
Adam B, Handy R D, Readman J W, et al. Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments [J]. Journal of Neurosurgery, 2009, 43(12): 4530-4536.
|
[12] |
Bao S, Wang H, Zhang W, et al. An investigation into the effects of silver nanoparticles on natural microbial communities in two freshwater sediments [J]. Environmental Pollution, 2016(219): 696-704.
|
[13] |
Zheng Y, Hou L, Liu M, et al. Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments [J]. Science Advances, 2017, 3(8): e1603229. doi: 10.1126/sciadv.1603229
|
[14] |
Welz P J, Khan N, Prins A. The effect of biogenic and chemically manufactured silver nanoparticles on the benthic bacterial communities in river sediments [J]. Science of The Total Environment, 2018(644): 1380-1390.
|
[15] |
Rajala J E, Vehniainen E R, Vaisanen A, et al. Partitioning of nanoparticle-originated dissolved silver in natural and artificial sediments [J]. Environmental Toxicology and Chemistry, 2017, 36(10): 2593-2601. doi: 10.1002/etc.3798
|
[16] |
Thalmann B, Voegelin A, Sinnet B, et al. Sulfidation kinetics of silver nanoparticles reacted with metal sulfides [J]. Environmental Science & Technology, 2014, 48(9): 4885-4892.
|
[17] |
Li L, Wang Y, Liu Q, et al. Rethinking stability of silver sulfide nanoparticles (Ag2S-NPs) in the aquatic environment: photoinduced transformation of Ag2S-NPs in the presence of Fe(III) [J]. Environmental Science & Technology, 2016, 50(1): 188-196.
|
[18] |
Thalmann B, Voegelin A, Morgenroth E, et al. Effect of humic acid on the kinetics of silver nanoparticle sulfidation [J]. Environmental Science: Nano, 2016, 3(1): 203-212. doi: 10.1039/C5EN00209E
|
[19] |
Wang P, Menzies N W, Dennis P G, et al. Silver nanoparticles entering soils via the wastewater-sludge-soil pathway pose low risk to plants but elevated Cl concentrations increase Ag bioavailability [J]. Environmental Science & Technology, 2016, 50(15): 8274-8281.
|
[20] |
Lee S W, Park S Y, Kim Y, et al. Effect of sulfidation and dissolved organic matters on toxicity of silver nanoparticles in sediment dwelling organism, Chironomus riparius [J]. Science of Total Environment, 2016(553): 565-573.
|
[21] |
Dale A L, Lowry G V, Casman E A. Modeling nanosilver transformations in freshwater sediments [J]. Environmental Science & Technology, 2013, 47(22): 12920-12928.
|
[22] |
Cong Y, Banta G T, Selck H, et al. Toxicity and bioaccumulation of sediment-associated silver nanoparticles in the estuarine polychaete, Nereis (Hediste) diversicolor [J]. Aquatic Toxicology, 2014(156): 106-115.
|
[23] |
Dedeh A, Ciutat A, Treguer-Delapierre M, et al. Impact of gold nanoparticles on zebrafish exposed to a spiked sediment [J]. Nanotoxicology, 2015, 9(1): 71-80. doi: 10.3109/17435390.2014.889238
|
[24] |
Tan Z Q, Yin Y G, Guo X R, et al. Tracking the transformation of nanoparticulate and ionic silver at environmentally relevant concentration levels by hollow fiber flow field-flow fractionation coupled to ICPMS [J]. Environmental Science & Technology, 2017, 51(21): 12369-12376.
|
[25] |
Li Y, Chen H, Wang F, et al. Environmental behavior and associated plant accumulation of silver nanoparticles in the presence of dissolved humic and fulvic acid [J]. Environmental Pollution, 2018, 243(Part B): 1334-1342.
|
[26] |
OECD. OECD 218 Sediment-Water Chironomid Toxicity Test Using Spiked Sediment [R]. 2004
|
[27] |
Hund-Rinke K, Baun A, Cupi D, et al. Regulatory ecotoxicity testing of nanomaterials - proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles [J]. Nanotoxicology, 2016, 10(10): 1442-1447. doi: 10.1080/17435390.2016.1229517
|
[28] |
Marshall S J, House W A, Russell N J, et al. Comparative adsorption of natural and commercially available humic acids to river sediments [J]. Colloids & Surfaces A Physicochemical and Engineering Aspects, 1998, 144(1–3): 127-137.
|
[29] |
Ma T, Wang M, Gong S, et al. Impacts of sediment organic matter content and pH on ecotoxicity of coexposure of TiO2 nanoparticles and cadmium to freshwater snails Bellamya aeruginosa [J]. Archives of Environmental Contamination and Toxicology, 2017, 72(1): 153-165. doi: 10.1007/s00244-016-0338-9
|
[30] |
Simpson S L, Angel B M, Jolley D F. Metal equilibration in laboratory-contaminated (spiked) sediments used for the development of whole-sediment toxicity tests [J]. Chemosphere, 2004, 54(5): 597-609. doi: 10.1016/j.chemosphere.2003.08.007
|
[31] |
Cambier S, Rogeberg M, Georgantzopoulou, et al. Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate [J]. Science of Total Environment, 2018(610-611): 972-982.
|
[32] |
Cong Y, Banta G T, Selck H, et al. Toxic effects and bioaccumulation of nano-, micron- and ionic-Ag in the polychaete, Nereis diversicolor [J]. Aquatic Toxicology, 2011, 105(3-4): 403-411. doi: 10.1016/j.aquatox.2011.07.014
|
[33] |
Brittle S W, Paluri S L, Foose D P, et al. Freshwater crayfish: a potential benthic-zone indicator of nanosilver and ionic silver pollution [J]. Environmental Science & Technology, 2016, 50(13): 7056-7065.
|
[34] |
Jin Y, Zhang X, Shu L, et al. Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio) [J]. Chemosphere, 2010, 78(7): 846-852. doi: 10.1016/j.chemosphere.2009.11.044
|
[35] |
Joseph S, Mathew B. Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes [J]. Journal of Molecular Liquids, 2015(204): 184-191.
|
[36] |
Thio B J, Zhou D, Keller A A. Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles [J]. Journal of Hazardous Materials, 2011, 189(1-2): 556-563. doi: 10.1016/j.jhazmat.2011.02.072
|
[37] |
Domingos R F, Tufenkji N, Wilkinson K I. Aggregation of titanium dioxide nanoparticles: role of a fulvic acid [J]. Environmental Science & Technology, 2009, 43(5): 1282-1286.
|
[38] |
Petosa A R, Jaisi D P, Quevedo I R, et al. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions [J]. Environmental Science & Technology, 2010, 44(17): 6532-6549.
|
[39] |
Praetorius A, Labille J, Scheringer M, et al. Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions [J]. Environmental Science & Technology, 2014, 48(18): 10690-10698.
|
[40] |
Grillo R, Rosa A H, Fraceto L F. Engineered nanoparticles and organic matter: a review of the state-of-the-art [J]. Chemosphere, 2015(119): 608-619.
|
[41] |
Sun T Y, Bornhoft N A, Hungerbuhler K, et al. Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials [J]. Environmental Science & Technology, 2016, 50(9): 4701-4711.
|
[42] |
Ellis L A, Baalousha M, Valsami-Jones E, et al. Seasonal variability of natural water chemistry affects the fate and behaviour of silver nanoparticles [J]. Chemosphere, 2018(191): 616-625.
|
[43] |
Baker T J, Tyler C R, Galloway T S. Impacts of metal and metal oxide nanoparticles on marine organisms [J]. Environmental Pollution, 2014(186): 257-271.
|
[44] |
Zhang C, Hu Z, Deng B. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms [J]. Water Research, 2016(88): 403-427.
|
[45] |
Fabrega J, Luoma S N, Tyler C R, et al. Silver nanoparticles: behaviour and effects in the aquatic environment [J]. Environment International, 2011, 37(2): 517-531. doi: 10.1016/j.envint.2010.10.012
|
[46] |
Ale A, Rossi A S, Bacchetta C, et al. Integrative assessment of silver nanoparticles toxicity in Prochilodus lineatus fish [J]. Ecological Indicators, 2018(93): 1190-1198.
|
[47] |
Sung H K, Jo E, Kim E, et al. Analysis of gold and silver nanoparticles internalized by zebrafish (Danio rerio) using single particle-inductively coupled plasma-mass spectrometry [J]. Chemosphere, 2018(209): 815-822.
|
[48] |
Lacave J M, Fanjul A, Bilbao E, et al. Acute toxicity, bioaccumulation and effects of dietary transfer of silver from brine shrimp exposed to PVP/PEI-coated silver nanoparticles to zebrafish [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2017(199): 69-80.
|
[49] |
Liu H, Wang X, Wu Y, et al. Toxicity responses of different organs of zebrafish (Danio rerio) to silver nanoparticles with different particle sizes and surface coatings [J]. Environmental Pollution, 2018(246): 414-422.
|
[50] |
Hadrup N, Lam H R. Oral toxicity of silver ions, silver nanoparticles and colloidal silver—a review [J]. Regulatory Toxicology and Pharmacology, 2014, 68(1): 1-7. doi: 10.1016/j.yrtph.2013.11.002
|
[51] |
Martin J D, Frost P C, Hintelmann H, et al. Accumulation of silver in yellow perch (Perca flavescens) and northern pike (Esox lucius) from a lake dosed with nanosilver [J]. Environmental Science & Technology, 2018, 52(19): 11114-11122.
|
[52] |
Lacave J M, Vicario-Pares U, Bilbao E, et al. Waterborne exposure of adult zebrafish to silver nanoparticles and to ionic silver results in differential silver accumulation and effects at cellular and molecular levels [J]. Science of Total Environment, 2018(642): 1209-1220.
|
[53] |
Zeng J, Xu P, Chen G, et al. Effects of silver nanoparticles with different dosing regimens and exposure media on artificial ecosystem [J]. Journal of Environmental Sciences (China)
|
[54] |
Orbea A, Gonzalez-Soto N, Lacave J M, et al. Developmental and reproductive toxicity of PVP/PEI-coated silver nanoparticles to zebrafish [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2017(199): 59-68.
|
[55] |
Devi G P, Ahmed K B, Varsha M K, et al. Sulfidation of silver nanoparticle reduces its toxicity in zebrafish [J]. Aquatic Toxicology, 2015(158): 149-156.
|
[56] |
Garcia-Sánchez M, Garrido I, Casiniro I D J, et al. Defence response of tomato seedlings to oxidative stress induced by phenolic compounds from dry olive mill residue [J]. Chemosphere, 2012, 89(6): 708-716. doi: 10.1016/j.chemosphere.2012.06.026
|
[57] |
Cao F, Wu P, Huang L, et al. Short-term developmental effects and potential mechanisms of azoxystrobin in larval and adult zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2018(198): 129-140.
|
[58] |
Merrifield D L, Shaw B J, Harper G M, et al. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio) [J]. Environmental Pollution, 2013(174): 157-163.
|
[59] |
Ma Y B, Lu C J, Junaid M, et al. Potential adverse outcome pathway (AOP) of silver nanoparticles mediated reproductive toxicity in zebrafish [J]. Chemosphere, 2018(207): 320-328.
|
[60] |
Udayangani R M C, Dananjaya S H S, Nikapitiya C, et al. Metagenomics analysis of gut microbiota and immune modulation in zebrafish (Danio rerio) fed chitosan silver nanocomposites [J]. Fish & Shellfish Immunology, 2017(66): 173-184.
|