Citation: | CHEN Zhi-Jiang, RUAN Zi-Xi, CHENG Nan, XIAO Li-Juan, PENG Liang, HAN Bo-Ping, LEI La-Mei. WHOLE-GENOME SEQUENCING AND PHOSPHORUS UPTAKE AND TRANSPORT PATHWAY COMPARATIVE ANALYSIS OF CYLINDROSPERMOPSIS RACIBORSKII N8[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(8): 1130-1141. DOI: 10.7541/2022.2021.0197 |
[1] |
Aguilera A, Gómez E B, Kaštovský J, et al. The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria) [J]. Phycologia, 2018, 57(2): 130-146. doi: 10.2216/17-2.1
|
[2] |
Antunes J T, Leão P N, Vasconcelos V M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species [J]. Frontiers in Microbiology, 2015(6): 473.
|
[3] |
Sinha R, Pearson L A, Davis T W, et al. Increased incidence of Cylindrospermopsis raciborskii in temperate zones - Is climate change responsible [J]? Water Research, 2012, 46(5): 1408-1419. doi: 10.1016/j.watres.2011.12.019
|
[4] |
Lagos N, Onodera H, Zagatto P A, et al. The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil [J]. Toxicon, 1999, 37(10): 1359-1373. doi: 10.1016/S0041-0101(99)00080-X
|
[5] |
Rzymski P, Poniedziałek B. In search of environmental role of cylindrospermopsin: a review on global distribution and ecology of its producers [J]. Water Research, 2014(66): 320-337. doi: 10.1016/j.watres.2014.08.029
|
[6] |
Burford M A, Willis A, Chuang A, et al. Recent insights into physiological responses to nutrients by the cylindrospermopsin producing cyanobacterium, Cylindrospermopsis raciborskii [J]. Journal of Oceanology and Limnology, 2018, 36(4): 1032-1039. doi: 10.1007/s00343-018-7179-5
|
[7] |
Ley T J, Mardis E R, Ding L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome [J]. Nature, 2008, 456(7218): 66-72. doi: 10.1038/nature07485
|
[8] |
Roberts R J, Carneiro M O, Schatz M C. The advantages of SMRT sequencing [J]. Genome Biology, 2013, 14(7): 405. doi: 10.1186/gb-2013-14-6-405
|
[9] |
黄勇. 基于高通量测序的微生物基因组学研究 [D]. 北京: 中国人民解放军军事医学科学院, 2013.
Huang Y. The research of microbial genomics based on high-throughput sequencing [D]. Beijing: Chinese People's Liberation Army Academy of Military Medical Sciences, 2013.
|
[10] |
Zhang J Y, Guan R, Zhang H J, et al. Complete genome sequence and genomic characterization of Microcystis panniformis FACHB 1757 by third-generation sequencing [J]. Standards in Genomic Sciences, 2016(11): 11. doi: 10.1186/s40793-016-0130-5
|
[11] |
Yamaguchi H, Suzuki S, Osana Y, et al. Complete genome sequence of Microcystis aeruginosa NIES-2481 and common genomic features of group G M. aeruginosa [J]. Journal of Genomics, 2018(6): 30-33. doi: 10.7150/jgen.24935
|
[12] |
Harke M J, Steffen M M, Gobler C J, et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. [J]. Harmful Algae, 2016(54): 4-20. doi: 10.1016/j.hal.2015.12.007
|
[13] |
Li X, Dreher T W, Li R. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species [J]. Harmful Algae, 2016(54): 54-68. doi: 10.1016/j.hal.2015.10.015
|
[14] |
Stucken K, John U, Cembella A, et al. The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications [J]. PLoS One, 2010, 5(2): e9235. doi: 10.1371/journal.pone.0009235
|
[15] |
Sinha R, Pearson L A, Davis T W, et al. Comparative genomics of Cylindrospermopsis raciborskii strains with differential toxicities [J]. BMC Genomics, 2014(15): 83. doi: 10.1186/1471-2164-15-83
|
[16] |
Willis A, Woodhouse J N, Ongley S E, et al. Genome variation in nine co-occurring toxic Cylindrospermopsis raciborskii strains [J]. Harmful Algae, 2018(73): 157-166. doi: 10.1016/j.hal.2018.03.001
|
[17] |
Abreu V A C, Popin R V, Alvarenga D O, et al. Genomic and genotypic characterization of Cylindrospermopsis raciborskii: toward an intraspecific phylogenetic evaluation by comparative genomics [J]. Frontiers in Microbiology, 2018(9): 306. doi: 10.3389/fmicb.2018.00306
|
[18] |
Su Z, Olman V, Xu Y. Computational prediction of pho regulons in cyanobacteria [J]. BMC Genomics, 2007(8): 156. doi: 10.1186/1471-2164-8-156
|
[19] |
Dyhrman S T. Nutrients and their acquisition: phosphorus physiology in microalgae [J]. The Physiology of Microalgae, 2016: 155-183.
|
[20] |
Dyhrman S T, Haley S T. Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii [J]. Applied and Environmental Microbiology, 2006, 72(2): 1452-1458. doi: 10.1128/AEM.72.2.1452-1458.2006
|
[21] |
Kolowith L C, Ingall E D, Benner R. Composition and cycling of marine organic phosphorus [J]. Limnology and Oceanography, 2001, 46(2): 309-320. doi: 10.4319/lo.2001.46.2.0309
|
[22] |
Ray J M, Bhaya D, Block M A, et al. Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC 7942 [J]. Journal of Bacteriology, 1991, 173(14): 4297-4309. doi: 10.1128/jb.173.14.4297-4309.1991
|
[23] |
戴景峻, 彭亮, 于婷, 等. 镇海水库拟柱孢藻的分离鉴定和氮磷对其生长的影响 [J]. 水生生物学报, 2015, 39(3): 533-539. doi: 10.7541/2015.70
Dai J J, Peng L, Yu T, et al. The effects of phosphorus and nitrogen on the growth of Cylindrospermopsis raciborskii n8 isolated from the Zhenhai Reservoir [J]. Acta Hydrobiologica Sinica, 2015, 39(3): 533-539. doi: 10.7541/2015.70
|
[24] |
赵莉. 一座热带大型水库—镇海水库拟柱孢藻(Cylindrospermopsis raciborskii)的季节动态及驱动因子分析 [D]. 广州: 暨南大学, 2017.
Zhao L. Seasonal dynamics and potential regulating factors of Cylindrospermopsis raciborskii in a large tropical reservoir: Zhenhai Reservoir, Guangdong Province [D]. Guangzhou: Jinan University, 2017.
|
[25] |
Rippka R, Stanier R Y, Deruelles J, et al. Generic assignments, strain histories and properties of pure cultures of cyanobacteria [J]. Microbiology, 1979, 111(1): 1-61. doi: 10.1099/00221287-111-1-1
|
[26] |
Chin C S, Alexander D H, Marks P, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data [J]. Nature Methods, 2013, 10(6): 563-569. doi: 10.1038/nmeth.2474
|
[27] |
Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences [J]. Current Protocols in Bioinformatics, 2009, 25(1): 4.10.1-4.10.14.
|
[28] |
Lagesen K, Hallin P, Rødland E A, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes [J]. Nucleic Acids Research, 2007, 35(9): 3100-3108. doi: 10.1093/nar/gkm160
|
[29] |
Schattner P, Brooks A N, Lowe T M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs [J]. Nucleic Acids Research, 2005, 33(suppl_2): W686-W689.
|
[30] |
Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions [J]. Nucleic Acids Research, 2001, 29(12): 2607-2618. doi: 10.1093/nar/29.12.2607
|
[31] |
Tatusov R L, Galperin M Y, Natale D A, et al. The COG database: a tool for genome-scale analysis of protein functions and evolution [J]. Nucleic Acids Research, 2000, 28(1): 33-36. doi: 10.1093/nar/28.1.33
|
[32] |
Boeckmann B, Bairoch A, Apweiler R, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 [J]. Nucleic Acids Research, 2003, 31(1): 365-370. doi: 10.1093/nar/gkg095
|
[33] |
Consortium G O. The Gene Ontology (GO) database and informatics resource [J]. Nucleic Acids Research, 2004, 32(suppl_1): D258-D261.
|
[34] |
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes [J]. Nucleic Acids Research, 2000, 28(1): 27-30. doi: 10.1093/nar/28.1.27
|
[35] |
Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics [J]. Genome Research, 2009, 19(9): 1639-1645. doi: 10.1101/gr.092759.109
|
[36] |
Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0 [J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729. doi: 10.1093/molbev/mst197
|
[37] |
Medema M H, Blin K, Cimermancic P, et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences [J]. Nucleic Acids Research, 2011, 39(suppl_2): W339-W346. doi: 10.1093/nar/gkr466
|
[38] |
Fuentes-Valdés J J, Plominsky A M, Allen E E, et al. Complete genome sequence of a cylindrospermopsin-producing cyanobacterium, Cylindrospermopsis raciborskii CS505, containing a circular chromosome and a single extrachromosomal element [J]. Genome Announcements, 2016, 4(4): e00823-e00816.
|
[39] |
Fuentes-Valdés J J, Soto-Liebe K, Pérez-Pantoja D, et al. Draft genome sequences of Cylindrospermopsis raciborskii strains CS-508 and MVCC14, isolated from freshwater bloom events in Australia and Uruguay [J]. Standards in Genomic Sciences, 2018, 13: 26. doi: 10.1186/s40793-018-0323-1
|
[40] |
Lorenzi A S, Silva G G Z, Lopes F A C, et al. Draft genome sequence of Cylindrospermopsis raciborskii (cyanobacteria) strain ITEP-A1 isolated from a Brazilian semiarid freshwater body: evidence of saxitoxin and cylindrospermopsin synthetase genes [J]. Genome Announcements, 2016, 4(3): e00228-e00216.
|
[41] |
Hoffmann L, Ramos R J T, Guedes I A, et al. Draft genome sequences of two Brazilian cyanobacterial strains of Cylindrospermopsis raciborskii: differences in membrane transporters, saxitoxin production, and antioxidant activities [J]. Genome Announcements, 2017, 5(43): e00879-e00817.
|
[42] |
Jeong J Y, Lee S H, Yun M R, et al. Draft genome sequence of Raphidiopsis raciborskii strain GIHE 2018, isolated from a shallow freshwater pond in south Korea [J]. Microbiology Resource Announcements, 2020, 9(6): e01545-19.
|
[43] |
Martin R M, Moniruzzaman M, Mucci N C, et al. Cylindrospermopsis raciborskii Virus and host: genomic characterization and ecological relevance [J]. Environmental Microbiology, 2019, 21(6): 1942-1956. doi: 10.1111/1462-2920.14425
|
[44] |
Piccini C, Aubriot L, Fabre A, et al. Genetic and eco-physiological differences of South American Cylindrospermopsis raciborskii isolates support the hypothesis of multiple ecotypes [J]. Harmful Algae, 2011, 10(6): 644-653. doi: 10.1016/j.hal.2011.04.016
|
[45] |
Vico P, Bonilla S, Cremella B, et al. Biogeography of the cyanobacterium Raphidiopsis (Cylindrospermopsis) raciborskii: integrating genomics, phylogenetic and toxicity data [J]. Molecular Phylogenetics and Evolution, 2020(148): 106824. doi: 10.1016/j.ympev.2020.106824
|
[46] |
Mohamed Nor N H, Tan B F, Te S H, et al. Draft genome sequence of Cylindrospermopsis sp. strain CR12 extracted from the minimetagenome of a nonaxenic unialgal culture from a tropical freshwater lake [J]. Genome Announcements, 2016, 4(1): e01726-e01715.
|
[47] |
Martin R M, Kausch M, Yap K, et al. Metagenome-assembled genome sequences of Raphidiopsis raciborskii and Planktothrix agardhii from a cyanobacterial bloom in kissena lake, New York, USA [J]. Microbiology Resource Announcements, 2021, 10(2): e01380-e01320.
|
[48] |
Ari Ş, Arikan M. Next-Generation Sequencing: Advantages, Disadvantages, and FuturePlant Omics: Trends and Applications, 2016: 109-135.
|
[49] |
Adams M M, Gómez-García M R, Grossman A R, et al. Phosphorus deprivation responses and phosphonate utilization in a thermophilic Synechococcus sp. from microbial mats [J]. Journal of Bacteriology, 2008, 190(24): 8171-8184. doi: 10.1128/JB.01011-08
|
[50] |
Pitt F D, Mazard S, Humphreys L, et al. Functional characterization of Synechocystis sp. strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater cyanobacterium [J]. Journal of Bacteriology, 2010, 192(13): 3512-3523. doi: 10.1128/JB.00258-10
|
[51] |
Frangeul L, Quillardet P, Castets A M, et al. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium [J]. BMC Genomics, 2008(9): 274. doi: 10.1186/1471-2164-9-274
|
[52] |
Willis A, Chuang A W, Dyhrman S, et al. Differential expression of phosphorus acquisition genes in response to phosphorus stress in two Raphidiopsis raciborskii strains [J]. Harmful Algae, 2019(82): 19-25. doi: 10.1016/j.hal.2018.12.003
|
[53] |
Moreira C, Fathalli A, Vasconcelos V, et al. Phylogeny and biogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii [J]. Archives of Microbiology, 2015, 197(1): 47-52. doi: 10.1007/s00203-014-1052-5
|
[54] |
Haande S, Rohrlack T, Ballot A, et al. Genetic characterisation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) isolates from Africa and Europe [J]. Harmful Algae, 2008, 7(5): 692-701. doi: 10.1016/j.hal.2008.02.010
|
[55] |
Bai F, Shi J, Yang S, et al. Interspecific competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa on different phosphorus substrates [J]. Environmental Science and Pollution Research International, 2020, 27(34): 42264-42275. doi: 10.1007/s11356-020-08652-0
|