CHEN Zhi-Jiang, RUAN Zi-Xi, CHENG Nan, XIAO Li-Juan, PENG Liang, HAN Bo-Ping, LEI La-Mei. WHOLE-GENOME SEQUENCING AND PHOSPHORUS UPTAKE AND TRANSPORT PATHWAY COMPARATIVE ANALYSIS OF CYLINDROSPERMOPSIS RACIBORSKII N8[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(8): 1130-1141. DOI: 10.7541/2022.2021.0197
Citation: CHEN Zhi-Jiang, RUAN Zi-Xi, CHENG Nan, XIAO Li-Juan, PENG Liang, HAN Bo-Ping, LEI La-Mei. WHOLE-GENOME SEQUENCING AND PHOSPHORUS UPTAKE AND TRANSPORT PATHWAY COMPARATIVE ANALYSIS OF CYLINDROSPERMOPSIS RACIBORSKII N8[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(8): 1130-1141. DOI: 10.7541/2022.2021.0197

WHOLE-GENOME SEQUENCING AND PHOSPHORUS UPTAKE AND TRANSPORT PATHWAY COMPARATIVE ANALYSIS OF CYLINDROSPERMOPSIS RACIBORSKII N8

Funds: Supported by the National Natural Science Foundation of China (31770507); the Guangdong Provincial Water Conservancy Science and Technology Innovation Project (2016-29)
  • Received Date: August 16, 2021
  • Rev Recd Date: May 09, 2022
  • Available Online: June 19, 2022
  • Published Date: August 14, 2022
  • Tropical cyanobacterium Cylindrospermopsis raciborskii have attracted much attention due to their rapid expansion into temperate regions. Studies on understanding the genomic characteristics will help analyze their environmental adaptation mechanisms at the molecular level. The genome of C. raciborskii N8 isolated from Zhenhai Reservoir in Guangdong Province was sequenced using PacBio single-molecule real-time sequencing technology, SMRT, and then performed comparative analysis of the whole genomic characteristics. It was shown that genome size of the strain N8 was 3.857 Mb with 40.13% GC content, similar to other 27 C. raciborskii strains in NCBI databases. Further annotation predicted 3598 protein coding genes, representing the largest number among the published genome data. The number of genes annotated in COG, KEGG and GO databases were 2429, 1664 and 2244 respectively. The phylogenetic tree constructed with a single copy gene of the whole genome indicated that C. raciborskii N8 was the most closely related to strain CR12 from Singapore. We inferred that C. raciborskii N8 did not produce toxin cylindrospermopsin (CYN) and saxitoxin (STX) due to the absence of biosynthesis gene cluster for both toxins in its genome. Through examining the genomes of N8 and other 7 strains, we found that these strains had relatively complete phosphorus (P) uptake and transport pathway genes (two-component regulation system, low affinity inorganic P transport gene, high affinity inorganic P transport system, organic phosphonate transport complex, C-P lyase and alkaline phosphatase). This finding demonstrated that C. raciborskii has the potential to utilize different P forms in the ambient environment. However, differences in gene copy number and arrangement among these strains were observed, for example, two C-P lyase complex proteins genes (phnF and phnM) were found in the genome of C. raciborskii N8, while only one in the other 7 strains, indicating variation in C. raciborskii strains. This study represented the first reported whole genome of Chinese C. raciborskii strain. The analysis of its genomic characteristics and P metabolism pathway will help clarify the winning strategies of C. raciborskii in South China.
  • [1]
    Aguilera A, Gómez E B, Kaštovský J, et al. The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria) [J]. Phycologia, 2018, 57(2): 130-146. doi: 10.2216/17-2.1
    [2]
    Antunes J T, Leão P N, Vasconcelos V M. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species [J]. Frontiers in Microbiology, 2015(6): 473.
    [3]
    Sinha R, Pearson L A, Davis T W, et al. Increased incidence of Cylindrospermopsis raciborskii in temperate zones - Is climate change responsible [J]? Water Research, 2012, 46(5): 1408-1419. doi: 10.1016/j.watres.2011.12.019
    [4]
    Lagos N, Onodera H, Zagatto P A, et al. The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil [J]. Toxicon, 1999, 37(10): 1359-1373. doi: 10.1016/S0041-0101(99)00080-X
    [5]
    Rzymski P, Poniedziałek B. In search of environmental role of cylindrospermopsin: a review on global distribution and ecology of its producers [J]. Water Research, 2014(66): 320-337. doi: 10.1016/j.watres.2014.08.029
    [6]
    Burford M A, Willis A, Chuang A, et al. Recent insights into physiological responses to nutrients by the cylindrospermopsin producing cyanobacterium, Cylindrospermopsis raciborskii [J]. Journal of Oceanology and Limnology, 2018, 36(4): 1032-1039. doi: 10.1007/s00343-018-7179-5
    [7]
    Ley T J, Mardis E R, Ding L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome [J]. Nature, 2008, 456(7218): 66-72. doi: 10.1038/nature07485
    [8]
    Roberts R J, Carneiro M O, Schatz M C. The advantages of SMRT sequencing [J]. Genome Biology, 2013, 14(7): 405. doi: 10.1186/gb-2013-14-6-405
    [9]
    黄勇. 基于高通量测序的微生物基因组学研究 [D]. 北京: 中国人民解放军军事医学科学院, 2013.

    Huang Y. The research of microbial genomics based on high-throughput sequencing [D]. Beijing: Chinese People's Liberation Army Academy of Military Medical Sciences, 2013.
    [10]
    Zhang J Y, Guan R, Zhang H J, et al. Complete genome sequence and genomic characterization of Microcystis panniformis FACHB 1757 by third-generation sequencing [J]. Standards in Genomic Sciences, 2016(11): 11. doi: 10.1186/s40793-016-0130-5
    [11]
    Yamaguchi H, Suzuki S, Osana Y, et al. Complete genome sequence of Microcystis aeruginosa NIES-2481 and common genomic features of group G M. aeruginosa [J]. Journal of Genomics, 2018(6): 30-33. doi: 10.7150/jgen.24935
    [12]
    Harke M J, Steffen M M, Gobler C J, et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. [J]. Harmful Algae, 2016(54): 4-20. doi: 10.1016/j.hal.2015.12.007
    [13]
    Li X, Dreher T W, Li R. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species [J]. Harmful Algae, 2016(54): 54-68. doi: 10.1016/j.hal.2015.10.015
    [14]
    Stucken K, John U, Cembella A, et al. The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications [J]. PLoS One, 2010, 5(2): e9235. doi: 10.1371/journal.pone.0009235
    [15]
    Sinha R, Pearson L A, Davis T W, et al. Comparative genomics of Cylindrospermopsis raciborskii strains with differential toxicities [J]. BMC Genomics, 2014(15): 83. doi: 10.1186/1471-2164-15-83
    [16]
    Willis A, Woodhouse J N, Ongley S E, et al. Genome variation in nine co-occurring toxic Cylindrospermopsis raciborskii strains [J]. Harmful Algae, 2018(73): 157-166. doi: 10.1016/j.hal.2018.03.001
    [17]
    Abreu V A C, Popin R V, Alvarenga D O, et al. Genomic and genotypic characterization of Cylindrospermopsis raciborskii: toward an intraspecific phylogenetic evaluation by comparative genomics [J]. Frontiers in Microbiology, 2018(9): 306. doi: 10.3389/fmicb.2018.00306
    [18]
    Su Z, Olman V, Xu Y. Computational prediction of pho regulons in cyanobacteria [J]. BMC Genomics, 2007(8): 156. doi: 10.1186/1471-2164-8-156
    [19]
    Dyhrman S T. Nutrients and their acquisition: phosphorus physiology in microalgae [J]. The Physiology of Microalgae, 2016: 155-183.
    [20]
    Dyhrman S T, Haley S T. Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii [J]. Applied and Environmental Microbiology, 2006, 72(2): 1452-1458. doi: 10.1128/AEM.72.2.1452-1458.2006
    [21]
    Kolowith L C, Ingall E D, Benner R. Composition and cycling of marine organic phosphorus [J]. Limnology and Oceanography, 2001, 46(2): 309-320. doi: 10.4319/lo.2001.46.2.0309
    [22]
    Ray J M, Bhaya D, Block M A, et al. Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC 7942 [J]. Journal of Bacteriology, 1991, 173(14): 4297-4309. doi: 10.1128/jb.173.14.4297-4309.1991
    [23]
    戴景峻, 彭亮, 于婷, 等. 镇海水库拟柱孢藻的分离鉴定和氮磷对其生长的影响 [J]. 水生生物学报, 2015, 39(3): 533-539. doi: 10.7541/2015.70

    Dai J J, Peng L, Yu T, et al. The effects of phosphorus and nitrogen on the growth of Cylindrospermopsis raciborskii n8 isolated from the Zhenhai Reservoir [J]. Acta Hydrobiologica Sinica, 2015, 39(3): 533-539. doi: 10.7541/2015.70
    [24]
    赵莉. 一座热带大型水库—镇海水库拟柱孢藻(Cylindrospermopsis raciborskii)的季节动态及驱动因子分析 [D]. 广州: 暨南大学, 2017.

    Zhao L. Seasonal dynamics and potential regulating factors of Cylindrospermopsis raciborskii in a large tropical reservoir: Zhenhai Reservoir, Guangdong Province [D]. Guangzhou: Jinan University, 2017.
    [25]
    Rippka R, Stanier R Y, Deruelles J, et al. Generic assignments, strain histories and properties of pure cultures of cyanobacteria [J]. Microbiology, 1979, 111(1): 1-61. doi: 10.1099/00221287-111-1-1
    [26]
    Chin C S, Alexander D H, Marks P, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data [J]. Nature Methods, 2013, 10(6): 563-569. doi: 10.1038/nmeth.2474
    [27]
    Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences [J]. Current Protocols in Bioinformatics, 2009, 25(1): 4.10.1-4.10.14.
    [28]
    Lagesen K, Hallin P, Rødland E A, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes [J]. Nucleic Acids Research, 2007, 35(9): 3100-3108. doi: 10.1093/nar/gkm160
    [29]
    Schattner P, Brooks A N, Lowe T M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs [J]. Nucleic Acids Research, 2005, 33(suppl_2): W686-W689.
    [30]
    Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions [J]. Nucleic Acids Research, 2001, 29(12): 2607-2618. doi: 10.1093/nar/29.12.2607
    [31]
    Tatusov R L, Galperin M Y, Natale D A, et al. The COG database: a tool for genome-scale analysis of protein functions and evolution [J]. Nucleic Acids Research, 2000, 28(1): 33-36. doi: 10.1093/nar/28.1.33
    [32]
    Boeckmann B, Bairoch A, Apweiler R, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 [J]. Nucleic Acids Research, 2003, 31(1): 365-370. doi: 10.1093/nar/gkg095
    [33]
    Consortium G O. The Gene Ontology (GO) database and informatics resource [J]. Nucleic Acids Research, 2004, 32(suppl_1): D258-D261.
    [34]
    Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes [J]. Nucleic Acids Research, 2000, 28(1): 27-30. doi: 10.1093/nar/28.1.27
    [35]
    Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics [J]. Genome Research, 2009, 19(9): 1639-1645. doi: 10.1101/gr.092759.109
    [36]
    Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0 [J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729. doi: 10.1093/molbev/mst197
    [37]
    Medema M H, Blin K, Cimermancic P, et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences [J]. Nucleic Acids Research, 2011, 39(suppl_2): W339-W346. doi: 10.1093/nar/gkr466
    [38]
    Fuentes-Valdés J J, Plominsky A M, Allen E E, et al. Complete genome sequence of a cylindrospermopsin-producing cyanobacterium, Cylindrospermopsis raciborskii CS505, containing a circular chromosome and a single extrachromosomal element [J]. Genome Announcements, 2016, 4(4): e00823-e00816.
    [39]
    Fuentes-Valdés J J, Soto-Liebe K, Pérez-Pantoja D, et al. Draft genome sequences of Cylindrospermopsis raciborskii strains CS-508 and MVCC14, isolated from freshwater bloom events in Australia and Uruguay [J]. Standards in Genomic Sciences, 2018, 13: 26. doi: 10.1186/s40793-018-0323-1
    [40]
    Lorenzi A S, Silva G G Z, Lopes F A C, et al. Draft genome sequence of Cylindrospermopsis raciborskii (cyanobacteria) strain ITEP-A1 isolated from a Brazilian semiarid freshwater body: evidence of saxitoxin and cylindrospermopsin synthetase genes [J]. Genome Announcements, 2016, 4(3): e00228-e00216.
    [41]
    Hoffmann L, Ramos R J T, Guedes I A, et al. Draft genome sequences of two Brazilian cyanobacterial strains of Cylindrospermopsis raciborskii: differences in membrane transporters, saxitoxin production, and antioxidant activities [J]. Genome Announcements, 2017, 5(43): e00879-e00817.
    [42]
    Jeong J Y, Lee S H, Yun M R, et al. Draft genome sequence of Raphidiopsis raciborskii strain GIHE 2018, isolated from a shallow freshwater pond in south Korea [J]. Microbiology Resource Announcements, 2020, 9(6): e01545-19.
    [43]
    Martin R M, Moniruzzaman M, Mucci N C, et al. Cylindrospermopsis raciborskii Virus and host: genomic characterization and ecological relevance [J]. Environmental Microbiology, 2019, 21(6): 1942-1956. doi: 10.1111/1462-2920.14425
    [44]
    Piccini C, Aubriot L, Fabre A, et al. Genetic and eco-physiological differences of South American Cylindrospermopsis raciborskii isolates support the hypothesis of multiple ecotypes [J]. Harmful Algae, 2011, 10(6): 644-653. doi: 10.1016/j.hal.2011.04.016
    [45]
    Vico P, Bonilla S, Cremella B, et al. Biogeography of the cyanobacterium Raphidiopsis (Cylindrospermopsis) raciborskii: integrating genomics, phylogenetic and toxicity data [J]. Molecular Phylogenetics and Evolution, 2020(148): 106824. doi: 10.1016/j.ympev.2020.106824
    [46]
    Mohamed Nor N H, Tan B F, Te S H, et al. Draft genome sequence of Cylindrospermopsis sp. strain CR12 extracted from the minimetagenome of a nonaxenic unialgal culture from a tropical freshwater lake [J]. Genome Announcements, 2016, 4(1): e01726-e01715.
    [47]
    Martin R M, Kausch M, Yap K, et al. Metagenome-assembled genome sequences of Raphidiopsis raciborskii and Planktothrix agardhii from a cyanobacterial bloom in kissena lake, New York, USA [J]. Microbiology Resource Announcements, 2021, 10(2): e01380-e01320.
    [48]
    Ari Ş, Arikan M. Next-Generation Sequencing: Advantages, Disadvantages, and FuturePlant Omics: Trends and Applications, 2016: 109-135.
    [49]
    Adams M M, Gómez-García M R, Grossman A R, et al. Phosphorus deprivation responses and phosphonate utilization in a thermophilic Synechococcus sp. from microbial mats [J]. Journal of Bacteriology, 2008, 190(24): 8171-8184. doi: 10.1128/JB.01011-08
    [50]
    Pitt F D, Mazard S, Humphreys L, et al. Functional characterization of Synechocystis sp. strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater cyanobacterium [J]. Journal of Bacteriology, 2010, 192(13): 3512-3523. doi: 10.1128/JB.00258-10
    [51]
    Frangeul L, Quillardet P, Castets A M, et al. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium [J]. BMC Genomics, 2008(9): 274. doi: 10.1186/1471-2164-9-274
    [52]
    Willis A, Chuang A W, Dyhrman S, et al. Differential expression of phosphorus acquisition genes in response to phosphorus stress in two Raphidiopsis raciborskii strains [J]. Harmful Algae, 2019(82): 19-25. doi: 10.1016/j.hal.2018.12.003
    [53]
    Moreira C, Fathalli A, Vasconcelos V, et al. Phylogeny and biogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii [J]. Archives of Microbiology, 2015, 197(1): 47-52. doi: 10.1007/s00203-014-1052-5
    [54]
    Haande S, Rohrlack T, Ballot A, et al. Genetic characterisation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) isolates from Africa and Europe [J]. Harmful Algae, 2008, 7(5): 692-701. doi: 10.1016/j.hal.2008.02.010
    [55]
    Bai F, Shi J, Yang S, et al. Interspecific competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa on different phosphorus substrates [J]. Environmental Science and Pollution Research International, 2020, 27(34): 42264-42275. doi: 10.1007/s11356-020-08652-0
  • Cited by

    Periodical cited type(5)

    1. 王颖,黄广华,周秋白,张锦华,周磊涛,包屹红,周文宗. 健康与上草黄鳝菌群组成差异分析. 江西农业大学学报. 2024(02): 467-480 .
    2. 刘洋洋,洪梦杰. 复合酸化剂对草鱼生长性能、非特异性免疫力及血清生化指标的影响. 饲料研究. 2024(07): 56-60 .
    3. 田甜,张建明,朱欣,张德志,胡亚成. 长江鲟早期发育阶段肠道菌群塑造机制. 中国水产科学. 2024(05): 546-556 .
    4. 李淑怡,冀晓雨,邵天娇,白莹. 牛磺酸在水产养殖中的应用研究进展. 饲料研究. 2024(18): 173-177 .
    5. 李彦先,胡海滨,张健,潘雷雷,姜瑞丽,宋涛,贠彪,庄界成,解绶启,钱雪桥. 饲料中鸡肉粉替代鱼粉、磷脂油替代鱼油对中成阶段线鳢生长、饲料利用和体组成的影响. 上海海洋大学学报. 2024(06): 1335-1344 .

    Other cited types(1)

Catalog

    Article views (2937) PDF downloads (78) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return