Citation: | CHEN Jie, DONG Meng, CUI Yue, FANG Cui-Lian, CHEN Xu-Tang, LIU Zi-Ming. TRANSCRIPTOME ANALYSIS OF TWO DIFFERENT MORPHOLOGICAL POPULATIONS OF SCYLLA PARAMAMOSAIN UNDER COLD STRESS[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(8): 1256-1264. DOI: 10.7541/2022.2021.129 |
[1] |
马凌波, 张凤英, 乔振国, 等. 中国东南沿海青蟹线粒体COI基因部分序列分析 [J]. 水产学报, 2006, 30(4): 463-468.
Ma L B, Zhang F Y, Qiao Z G, et al. Sequence analysis of mitochondrial COI gene of Scylla spp. along coast of southeastern China [J]. Journal of Fisheries of China, 2006, 30(4): 463-468.
|
[2] |
高天翔, 王玉江, 刘进贤, 等. 基于线粒体12S rRNA序列探讨4种青蟹系统发育关系及中国沿海青蟹的分类地位 [J]. 中国海洋大学学报(自然科学版), 2007, 37(1): 57-60.
Gao T X, Wang Y J, Liu J X, et al. Study on phylogenetic relationships of four Scylla species and taxonomic status of mud crab in China based on mitochondrial 12S rRNA sequences [J]. Periodical of Ocean University of China, 2007, 37(1): 57-60.
|
[3] |
林琪, 李少菁, 黎中宝, 等. 中国东南沿海青蟹属不同种类的mtDNA COI基因序列分析及其系统发育 [J]. 厦门大学学报(自然科学版), 2008, 47(2): 268-273.
Lin Q, Li S J, Li Z B, et al. Sequence analysis of mtDNA COI gene and molecular phylogeny of four spcies in Scylla from the coast of southeast China [J]. Journal of Xiamen University (
|
[4] |
Liu Z M, Zhu X L, Lu J, et al. Effect of high temperature stress on heat shock protein expression and antioxidant enzyme activity of two morphs of the mud crab Scylla paramamosain [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2018(223): 10-17.
|
[5] |
Liu Z M, Wang G Z, Wu L S, et al. Seasonal change in mitochondrial function and metabolic enzyme activity of different populations of the mud crab, Scylla paramamosain, from China [J]. Aquaculture, 2013(376-379): 68-75. doi: 10.1016/j.aquaculture.2012.11.007
|
[6] |
Kong X, Wang G, Li S. Seasonal variations of ATPase activity and antioxidant defenses in gills of the mud crab Scylla serrata (Crustacea, Decapoda) [J]. Marine Biology, 2008, 154(2): 269-276. doi: 10.1007/s00227-008-0920-4
|
[7] |
Kong X, Wang G, Li S. Effects of low temperature acclimation on antioxidant defenses and ATPase activities in the muscle of mud crab (Scylla paramamosain) [J]. Aquaculture, 2012(370-371): 144-149. doi: 10.1016/j.aquaculture.2012.10.012
|
[8] |
Saranyan P V, Ross N W, Benfey T J. Erythrocyte heat shock protein responses to chronic (in vivo) and acute (in vitro) temperature challenge in diploid and triploid salmonids [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2017(206): 95-104.
|
[9] |
Zheng J, Li L, Dong H, et al. Molecular cloning of heat shock protein 60 from Marsupenaeus japonicus and its expression profiles at early developmental stages and response to heat stress [J]. Aquaculture Research, 2018, 49(1): 301-312. doi: 10.1111/are.13461
|
[10] |
Houde A L S, Akbarzadeh A, Günther O P, et al. Salmonid gene expression biomarkers indicative of physiological responses to changes in salinity and temperature, but not dissolved oxygen [J]. The Journal of Experimental Biology, 2019, 222(Pt 13): jeb198036.
|
[11] |
Huang A M, Geng Y, Wang K Y, et al. Molecular cloning and expression analysis of heat shock protein 90 (Hsp90) of the mud crab, Scylla paramamosain [J]. Journal of Agricultural Science, 2013, 5(7): 1-11.
|
[12] |
Yang Y N, Ye H, Huang H, et al. Expression of Hsp70 in the mud crab, Scylla paramamosain in response to bacterial, osmotic, and thermal stress [J]. Cell Stress & Chaperones, 2013, 18(4): 475-482.
|
[13] |
Yang Y N, Ye H, Huang H, et al. Characterization and expression of SpHsp60 in hemocytes after challenge to bacterial, osmotic and thermal stress from the mud crab Scylla paramamosain [J]. Fish & Shellfish Immunology, 2013, 35(4): 1185-1191.
|
[14] |
Ding J, Chen F Y, Ren S Y, et al. Molecular characterization and promoter analysis of crustacean heat shock protein 10 in Scylla paramemosain [J]. Genome, 2013, 56(5): 273-281. doi: 10.1139/gen-2013-0002
|
[15] |
Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. Nature Biotechnology, 2011, 29(7): 644-652. doi: 10.1038/nbt.1883
|
[16] |
Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-seq [J]. Nature Methods, 2008, 5(7): 621-628. doi: 10.1038/nmeth.1226
|
[17] |
Robinson M D, McCarthy D J, Smyth G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data [J]. Bioinformatics (Oxford, England)
|
[18] |
Young M D, Wakefield M J, Smyth G K, et al. Gene ontology analysis for RNA-seq: accounting for selection bias [J]. Genome Biology, 2010, 11(2): R14. doi: 10.1186/gb-2010-11-2-r14
|
[19] |
Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment [J]. Nucleic Acids Research, 2008(36): D480-D484.
|
[20] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ CT method [J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
|
[21] |
Hsieh S L, Chiu Y C, Kuo C M. Molecular cloning and tissue distribution of ferritin in Pacific white shrimp (Litopenaeus vannamei) [J]. Fish & Shellfish Immunology, 2006, 21(3): 279-283.
|
[22] |
Xu Z, Liu A, Li S, et al. Hepatopancreas immune response during molt cycle in the mud crab, Scylla paramamosain [J]. Scientific Reports, 2020(10): 13102. doi: 10.1038/s41598-020-70139-2
|
[23] |
孔祥会, 王桂忠, 王克坚, 等. 低温驯化下锯缘青蟹肝胰腺蛋白质表达及脂肪酸组成的变化 [J]. 水生生物学报, 2005, 29(5): 524-532. doi: 10.3321/j.issn:1000-3207.2005.05.009
Kong X H, Wang G Z, Wang K J, et al. Changes of protein expression and fatty acid composition in hepatopancreas of Scylla serrata under low temperature acclimation [J]. Acta Hydrobiologica Sinica, 2005, 29(5): 524-532. doi: 10.3321/j.issn:1000-3207.2005.05.009
|
[24] |
刘子明, 王桂忠, 李少菁, 等. 低温季节不同种群拟穴青蟹线粒体呼吸速率和酶活性的差异 [J]. 厦门大学学报(自然科学版), 2018, 57(3): 354-362.
Liu Z M, Wang G Z, Li S J, et al. Mitochondrial respiration rate and enzyme activity of two populations of Scylla paramamosain during low temperature seasons [J]. Journal of Xiamen University (
|
[25] |
Guderley H, St-Pierre J. Going with the flow or life in the fast lane: contrasting mitochondrial responses to thermal change [J]. The Journal of Experimental Biology, 2002, 205(Pt 15): 2237-2249.
|
[26] |
Yan Y, Xie X. Liver mitochondrial and whole-animal level metabolic compensation in a catfish during seasonal acclimatization [J]. Current Zoology, 2011, 57(1): 109-115. doi: 10.1093/czoolo/57.1.109
|
[27] |
Berner N J, Bessay E P. Correlation of seasonal acclimatization in metabolic enzyme activity with preferred body temperature in the Eastern red spotted newt (Notophthalmus viridescens viridescens) [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2006, 144(4): 429-436.
|
[28] |
董丽君, 孟宪红, 孔杰, 等. 基于转录组分析筛选凡纳滨对虾低温胁迫下的差异表达基因 [J]. 中国水产科学, 2019, 26(1): 161-171. doi: 10.3724/SP.J.1118.2019.18061
Dong L J, Meng X H, Kong J, et al. Screening of differentially expressed genes related to the cold tolerance in Litopenaeus vannamei based on high-throughput transcriptome sequencing [J]. Journal of Fishery Sciences of China, 2019, 26(1): 161-171. doi: 10.3724/SP.J.1118.2019.18061
|
[29] |
Shi M, Zhang Q, Li Y, et al. Global gene expression profile under low-temperature conditions in the brain of the grass carp (Ctenopharyngodon idellus) [J]. PLoS One, 2020, 15(9): e0239730. doi: 10.1371/journal.pone.0239730
|
[30] |
Liu L, Zhang R, Wang X, et al. Transcriptome analysis reveals molecular mechanisms responsive to acute cold stress in the tropical stenothermal fish tiger barb (Puntius tetrazona) [J]. BMC Genomics, 2020, 21(1): 737. doi: 10.1186/s12864-020-07139-z
|