Citation: | PAN Ya-Xiong, ZHOU Jun, ZHANG Yu, TAO Jin-Sheng, PAN Jia-Lin, TANG Zhao-Yang, FAN Yi-Wei, HU Ming-Guang, LI Hui-Ju, ZHANG Jian-She, CHU Wu-Ying. CHARACTERISTICS OF MTF-1 AND CADMIUM STRESS ON RHYTHMIC EXPRESSION IN CHINESE PERCH SINIPERCA CHUATSI[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(2): 316-322. DOI: 10.7541/2023.2022.0131 |
[1] |
Chen G H, Lv W, Xu Y H, et al. Functional analysis of MTF-1 and MT promoters and their transcriptional response to zinc (Zn) and copper (Cu) in yellow catfish Pelteobagrus fulvidraco [J]. Chemosphere, 2020(246): 125792.
|
[2] |
Chen S W, Wu K, Lv W H, et al. Functional analysis of two zinc (Zn) transporters (ZIP3 and ZIP8) promoters and their distinct response to MTF1 and RREB1 in the regulation of Zn metabolism [J]. International Journal of Molecular Sciences, 2020, 21(17): 6135. doi: 10.3390/ijms21176135
|
[3] |
Jackson A C, Liu J, Vallanat B, et al. Identification of novel activators of the metal responsive transcription factor (MTF-1) using a gene expression biomarker in a microarray compendium [J]. Metallomics, 2020, 12(9): 1400-1415. doi: 10.1039/d0mt00071j
|
[4] |
Talukder M, Bi S S, Jin H T, et al. Cadmium induced cerebral toxicity via modulating MTF1-MTs regulatory axis [J]. Environmental Pollution, 2021(285): 117083.
|
[5] |
Günther V, Lindert U, Schaffner W. The taste of heavy metals: Gene regulation by MTF-1 [J]. Biochimica et Biophysica Acta (BBA)- Molecular Cell Research, 2012, 1823(9): 1416-1425. doi: 10.1016/j.bbamcr.2012.01.005
|
[6] |
Radtke F, Georgiev O, Müller H P, et al. Functional domains of the heavy metal-responsive transcription regulator MTF-1 [J]. Nucleic Acids Research, 1995, 23(12): 2277-2286. doi: 10.1093/nar/23.12.2277
|
[7] |
Li Y, Kimura T, Laity J H, et al. The zinc-sensing mechanism of mouse MTF-1 involves linker peptides between the zinc fingers [J]. Molecular and Cellular Biology, 2006, 26(15): 5580-5587. doi: 10.1128/MCB.00471-06
|
[8] |
Radtke F, Heuchel R, Georgiev O, et al. Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter [J]. The EMBO Journal, 1993, 12(4): 1355-1362. doi: 10.1002/j.1460-2075.1993.tb05780.x
|
[9] |
Wimmer U, Wang Y, Georgiev O, et al. Two major branches of anti-cadmium defense in the mouse: MTF-1/metallothioneins and glutathione [J]. Nucleic Acids Research, 2005, 33(18): 5715-5727. doi: 10.1093/nar/gki881
|
[10] |
Chen W Y, John J A C, Lin C H, et al. Expression pattern of metallothionein, MTF-1 nuclear translocation, and its dna-binding activity in zebrafish (Danio rerio) induced by zinc and cadmium [J]. Environmental Toxicology and Chemistry, 2007, 26(1): 110-117. doi: 10.1897/06-153R.1
|
[11] |
Ferencz Á, Hermesz E. Identification and characterization of two mtf-1 genes in common carp [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2008, 148(3): 238-243.
|
[12] |
Pan Y X, Luo Z, Zhuo M Q, et al. Oxidative stress and mitochondrial dysfunction mediated Cd-induced hepatic lipid accumulation in zebrafish Danio rerio [J]. Aquatic Toxicology, 2018(199): 12-20.
|
[13] |
Kim Y, Park H R, Yeo W J, et al. The correlation between bioaccumulation and pattern of stress-related genes expression of black sea bream (Acanthopagrus schlegeli) by cadmium exposure [J]. Ocean Science Journal, 2017, 52(2): 231-242. doi: 10.1007/s12601-017-0022-7
|
[14] |
Jiménez-Ortega V, Cardinali D P, Fernández-Mateos M P, et al. Effect of cadmium on 24-hour pattern in expression of redox enzyme and clock genes in rat medial basal hypothalamus [J]. Biometals, 2010, 23(2): 327-337. doi: 10.1007/s10534-010-9292-6
|
[15] |
Jiménez Ortega V, Cano-Barquilla P, Scacchi P A, et al. Cadmium-induced disruption in 24-h expression of clock and redox enzyme genes in rat medial basal hypothalamus: prevention by melatonin [J]. Frontiers in Neurology, 2011(2): 13.
|
[16] |
Jiménez-Ortega V, Cano Barquilla P, Fernández-Mateos P, et al. Cadmium as an endocrine disruptor: correlation with anterior pituitary redox and circadian clock mechanisms and prevention by melatonin [J]. Free Radical Biology and Medicine, 2012, 53(12): 2287-2297. doi: 10.1016/j.freeradbiomed.2012.10.533
|
[17] |
Wu P, Li Y L, Cheng J, et al. Daily rhythmicity of clock gene transcript levels in fast and slow muscle fibers from Chinese perch (Siniperca chuatsi) [J]. BMC Genomics, 2016, 17(1): 1008. doi: 10.1186/s12864-016-3373-z
|
[18] |
张瑞祺, 郝月月, 宋银都, 等. 鳜视觉和侧线感觉调控捕食行为的动态观察 [J]. 中国水产科学, 2020, 27(10): 1136-1144.
Zhang R Q, Hao Y Y, Song Y D, et al. Predation behavior of mandarin fish (Siniperca chuatsi) regulated by visual and lateral line sensory [J]. Journal of Fishery Sciences of China, 2020, 27(10): 1136-1144.
|
[19] |
Hongyan W, Jinliang Z, Shoujie T, et al. Pollution status and risk analysis on heavy metals in muscles of Siniperca chuatsi from East China [J]. Asian Journal of Ecotoxicology, 2020(2): 268-278.
|
[20] |
刘晶洁, 褚武英, 朱鑫, 等. 鳜RORα基因的胚胎发育特征及饥饿对其节律性表达影响分析 [J]. 广西师范大学学报(自然科学版), 2021, 39(5): 190-197.
Liu J J, Chu W Y, Zhu X, et al. Embryonic development characteristics and rhythmic expression analysis of RORα gene under starvation in Siniperca chuatsi [J]. Journal of Guangxi Normal University (
|
[21] |
陈圆华, 李虹辉, 王利香, 等. GSK4112对尼罗罗非鱼肝脏Nr1d1和Ulk1b基因昼夜节律性表达的影响 [J]. 基因组学与应用生物学, 2021, 40(2): 584-590.
Chen Y H, Li H H, Wang L X, et al. Effects of GSK4112 on circadian rhythmicity expression of Nr1d1 and Ulk1b in liver of Nile tilapia (Oreochromis niloticus) [J]. Genomics and Applied Biology, 2021, 40(2): 584-590.
|
[22] |
Chen W Y, John J A C, Lin C H, et al. Molecular cloning and developmental expression of zinc finger transcription factor MTF-1 gene in zebrafish Danio rerio [J]. Biochemical and Biophysical Research Communications, 2002, 291(4): 798-805. doi: 10.1006/bbrc.2002.6517
|
[23] |
Christensen K A, Davidson W S. Autopolyploidy genome duplication preserves other ancient genome duplications in Atlantic salmon (Salmo salar) [J]. PLoS One, 2017, 12(2): e0173053. doi: 10.1371/journal.pone.0173053
|
[24] |
Li J T, Hou G Y, Kong X F, et al. The fate of recent duplicated genes following a fourth-round whole genome duplication in a tetraploid fish, common carp (Cyprinus carpio) [J]. Scientific Reports, 2015, 5(1): 1-9. doi: 10.9734/JSRR/2015/14076
|
[25] |
Lichtlen P, Georgiev O, Schaffner W, et al. The heavy metal-responsive transcription factor-1 (MTF-1) is not required for neural differentiation [J]. Biological chemistry, 1999, 380(6): 711-715.
|
[26] |
Günes Ç, Heuchel R, Georgiev O, et al. Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1 [J]. The EMBO Journal, 1998, 17(10): 2846-2854. doi: 10.1093/emboj/17.10.2846
|
[27] |
Lichtlen P, Schaffner W. Putting its fingers on stressful situations: the heavy metal-regulatory transcription factor MTF-1 [J]. Bioessays, 2001, 23(11): 1010-1017. doi: 10.1002/bies.1146
|
[28] |
André E, Conquet F, Steinmayr M, et al. Disruption of retinoid-related orphan receptor β changes circadian behavior, causes retinal degeneration and leads to vacillans phenotype in mice [J]. The EMBO Journal, 1998, 17(14): 3867-3877. doi: 10.1093/emboj/17.14.3867
|
[29] |
Cassandri M, Smirnov A, Novelli F, et al. Zinc-finger proteins in health and disease [J]. Cell Death Discovery, 2017, 3(1): 1-12.
|
[30] |
Lee S Y, Nam Y K. Molecular cloning of metal-responsive transcription factor-1 (MTF-1) and transcriptional responses to metal and heat stresses in Pacific abalone, Haliotis discus hannai [J]. Fisheries and Aquatic Sciences, 2017, 20(1): 1-13. doi: 10.1186/s41240-017-0046-z
|
[31] |
Lazado C C, Skov P V, Pedersen P B. Innate immune defenses exhibit circadian rhythmicity and differential temporal sensitivity to a bacterial endotoxin in Nile tilapia (Oreochromis niloticus) [J]. Fish & Shellfish Immunology, 2016(55): 613-622.
|
[32] |
Cuypers A, Plusquin M, Remans T, et al. Cadmium stress: an oxidative challenge [J]. Biometals, 2010, 23(5): 927-940. doi: 10.1007/s10534-010-9329-x
|
[33] |
Patra R C, Rautray A K, Swarup D. Oxidative stress in lead and cadmium toxicity and its amelioration [J]. Veterinary Medicine International, 2011(2011): 457327.
|
[34] |
Lafuente A. The hypothalamic–pituitary–gonadal axis is target of cadmium toxicity. An update of recent studies and potential therapeutic approaches [J]. Food and Chemical Toxicology, 2013(59): 395-404.
|
[35] |
Xiao B, Chen T M, Zhong Y. Possible molecular mechanism underlying cadmium-induced circadian rhythms disruption in zebrafish [J]. Biochemical and Biophysical Research Communications, 2016, 481(3-4): 201-205. doi: 10.1016/j.bbrc.2016.10.081
|
[36] |
Zheng J L, Yuan S S, Wu C W, et al. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2016(180): 36-44.
|
[37] |
Oishi K, Miyazaki K, Kadota K, et al. Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes [J]. Journal of Biological Chemistry, 2003, 278(42): 41519-41527. doi: 10.1074/jbc.M304564200
|
[38] |
Reinke H, Asher G. Circadian clock control of liver metabolic functions [J]. Gastroenterology, 2016, 150(3): 574-580. doi: 10.1053/j.gastro.2015.11.043
|
1. |
王辉,刘林,阮记明,梁惜梅,隗黎丽. 草鱼Pim-1基因克隆、组织表达及多克隆抗体的制备. 江西农业大学学报. 2022(03): 670-678 .
![]() |