HUANG Ying, GE Ru-Xiang, LOU Ge-Ge, MAN Zhou, JIANG Neng-Zuo, GUO Ya-Zhe, ZHU Xiao-Ming, LI Chen-Hao, LIU Xuan-Yu, CHEN Xin-Hua. DIETARY COENZYME Q10 ON GROWTH, ANTIOXIDANT CAPACITY AND TISSUE STRUCTURE OF JUVENILE GIFT TILAPIA (OREOCHROMIS NILOTICUS)[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(2): 204-216. DOI: 10.7541/2023.2022.0376
Citation: HUANG Ying, GE Ru-Xiang, LOU Ge-Ge, MAN Zhou, JIANG Neng-Zuo, GUO Ya-Zhe, ZHU Xiao-Ming, LI Chen-Hao, LIU Xuan-Yu, CHEN Xin-Hua. DIETARY COENZYME Q10 ON GROWTH, ANTIOXIDANT CAPACITY AND TISSUE STRUCTURE OF JUVENILE GIFT TILAPIA (OREOCHROMIS NILOTICUS)[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(2): 204-216. DOI: 10.7541/2023.2022.0376

DIETARY COENZYME Q10 ON GROWTH, ANTIOXIDANT CAPACITY AND TISSUE STRUCTURE OF JUVENILE GIFT TILAPIA (OREOCHROMIS NILOTICUS)

Funds: Supported by the National Key R & D Program of China (2019YFD0900200); Science and Technology Innovation Foundation of Fujian Agriculture and Forestry University (CXZX2019064S); Cooperative Project with DSM Vitamins (Shanghai) Limited (KH220128A and KH210114A)
  • Received Date: September 05, 2022
  • Rev Recd Date: September 29, 2022
  • Available Online: October 20, 2022
  • Published Date: February 14, 2023
  • To evaluate the effects of dietary coenzyme Q10 (CoQ10) on growth performance, body composition, antioxidant capacity, tissue structure and gene expression in juvenile genetically improved farmed tilapia (GIFT), juvenile GIFT tilapia with initial body weight of (19.97±0.13) g were fed with four diets containing 0, 40, 80 and 120 mg/kg CoQ10 for a 56-day trial. The results showed that the final body weight (FBW), feeding rate (FR), specific growth rate (SGR) and feed efficiency (FE) of supplemented CoQ10 groups had no significant difference compared with the control group, while 120 mg/kg CoQ10 group had the highest final body weight, specific growth rate and feed efficiency. The dry matter digestibility (DMD) of juvenile GIFT tilapia significantly increased when CoQ10 content was 120 mg/kg. The serum activities of catalase (CAT) and glutathione peroxidase (GSH-Px) in CoQ10 groups were significantly higher than those in the control group. The CAT and GSH-Px activities in liver of the CoQ10 groups were significantly higher than those in the control group. The SOD and GST activities in liver of 80 and 120 mg/kg CoQ10 groups were significantly higher than those in control group while malondialdehyde (MDA) content was significantly decreased. There was no significant difference in the moisture, crude protein and ash contents in the eviscerated whole fish among all groups. Compared with the control group, 120 mg/kg CoQ10 significantly decreased crude lipid content in the eviscerated whole fish. There was no significant difference in the moisture, crude protein, crude lipid and ash contents in the visceral mass among all groups. No significant histological changes in liver were identified in all groups. The intestinal villi length, villi density and muscle thickness in the 120 mg/kg group significantly increased. The expression of sod, cat, gsh-px, gst and igm mRNA in 120 mg/kg CoQ10 group were significantly higher than the control group, while the expression of il-1β and il-8 mRNA significantly decreased in the CoQ10 groups compared with the control group. In the challenge experiment by intraperitoneal injection with Aeromonas hydrophila, the cumulative survival rate of juvenile GIFT tilapia in 80 and 120 mg/kg CoQ10 groups was significantly higher than that in control group. In conclusion, these results suggested that dietary CoQ10 content within 120 mg/kg has no adverse effects on juvenile GIFT tilapia, dietary 120 mg/kg CoQ10 could improve digestibility, antioxidant abilities, liver antioxidant-related gene expression and resistance to Aeromonas hydrophila of juvenile GIFT tilapia.
  • [1]
    Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function [J]. Biochimica et Biophysica Acta, 1995, 1271(1): 195-204. doi: 10.1016/0925-4439(95)00028-3
    [2]
    Hargreaves I, Heaton R A, Mantle D. Disorders of human coenzyme Q10 metabolism: an overview [J]. International Journal of Molecular Sciences, 2020, 21(18): 6695. doi: 10.3390/ijms21186695
    [3]
    El-Sayed A I, Ahmed-Farid O, Radwan A A, et al. The capability of coenzyme Q10 to enhance heat tolerance in male rabbits: evidence from improved semen quality factor (SQF), testicular oxidative defense, and expression of testicular melatonin receptor MT1 [J]. Domestic Animal Endocrinology, 2021(74): 106403.
    [4]
    万灵, 陈朝英. 原发性辅酶Q10缺乏相关肾病的分子遗传学进展 [J]. 临床儿科杂志, 2022, 40(1): 73-77.

    Wan L, Chen C Y. Advances in molecular genetics of nephropathy associated with primary coenzyme Q10 deficiency [J]. Journal of Clinical Pediatrics, 2022, 40(1): 73-77.
    [5]
    念安. 揭开明星成分辅酶Q10的神秘面纱 [J]. 中国食品工业, 2022(7): 102-103.

    Nian A. Uncover the mystery of the star ingredient coenzyme Q10 [J]. China Food Industry, 2022(7): 102-103.
    [6]
    Chiba T, Watanabe T, Kume Y, et al. Toxicological studies of UbiQuinone-10 (1) acute toxicity test in rats and mice & subacute and chronic toxicity tests in rats [J]. Pharmacometrics, 1972(6): 781-786.
    [7]
    Fu X, Ji R, Dam J. Acute, subacute toxicity and genotoxic effect of Bio-Quinone® Q10 in mice and rats [J]. Regulatory Toxicology and Pharmacology, 2009, 53(1): 1-5. doi: 10.1016/j.yrtph.2008.09.003
    [8]
    Kitano M, Hosoe K, Fukutomi N, et al. 28-Day repeated dose toxicity study of dried microorganism in rats [J]. Food and Chemical Toxicology, 2004, 42(11): 1817-1824. doi: 10.1016/j.fct.2004.06.013
    [9]
    Yang C X, Liu S, Miao J K, et al. CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress [J]. Theriogenology, 2021(159): 77-86.
    [10]
    Modi K, Santani D D, Goyal R K, et al. Effect of coenzyme Q10 on catalase activity and other antioxidant parameters in streptozotocin-induced diabetic rats [J]. Biological Trace Element Research, 2006, 109(1): 25-33. doi: 10.1385/BTER:109:1:025
    [11]
    Motawi T K, Darwish H A, Hamed M A, et al. A therapeutic insight of niacin and coenzyme Q10 against diabetic encephalopathy in rats [J]. Molecular Neurobiology, 2017, 54(3): 1601-1611. doi: 10.1007/s12035-016-9765-x
    [12]
    El Agamy D F, Naguib Y M. CoQ10 ameliorates monosodium glutamate-induced alteration in detrusor activity and responsiveness in rats via anti-inflammatory, anti-oxidant and channel inhibiting mechanisms [J]. BMC Urology, 2019, 19(1): 103. doi: 10.1186/s12894-019-0534-9
    [13]
    程梦玲, 梁大红, 钟燕婷, 等. 辅酶Q10对糖尿病小鼠肝肾损伤以及骨骼的影响 [J]. 中国临床药理学杂志, 2022, 38(9): 955-959.

    Cheng M L, Liang D H, Zhong Y T, et al. Effects of coenzyme Q10 on liver and kidney injury and bone in diabetic mice [J]. The Chinese Journal of Clinical Pharmacology, 2022, 38(9): 955-959.
    [14]
    曹玉音, 陈迎玉, 王晖, 等. 辅酶Q10在活性氧相关疾病中应用研究进展 [J]. 实用医学杂志, 2018, 34(20): 3482-3485. doi: 10.3969/j.issn.1006-5725.2018.20.038

    Cao Y Y, Chen Y Y, Wang H, et al. Advance in application of coenzyme Q10 in diseases related to reactive oxygen [J]. The Journal of Practical Medicine, 2018, 34(20): 3482-3485. doi: 10.3969/j.issn.1006-5725.2018.20.038
    [15]
    Faraji M, Karimi Dehkordi S, Zamiani Moghadam A K, et al. Combined effects of guanidinoacetic acid, coenzyme Q10 and taurine on growth performance, gene expression and ascites mortality in broiler chickens [J]. Journal of Animal Physiology and Animal Nutrition, 2019, 103(1): 162-169. doi: 10.1111/jpn.13020
    [16]
    Sharideh H, Zhandi M, Zenioaldini S, et al. The effect of coenzyme Q10 on rooster semen preservation in cooling condition [J]. Theriogenology, 2019(129): 103-109.
    [17]
    Crane F L, Hatefi Y, Lester R L, et al. Isolation of a quinone from beef heart mitochondria [J]. Biochimica et Biophysica Acta, 1957, 25(1): 220-221.
    [18]
    高修歌, 刘娜, 彭麟, 等. 辅酶Q10对猪肉品质的影响 [J]. 南京农业大学学报, 2015, 38(2): 318-323. doi: 10.7685/j.issn.1000-2030.2015.02.021

    Gao X G, Liu N, Peng L, et al. Effects of coenzyme Q10 on meat quality of pigs [J]. Journal of Nanjing Agricultural University, 2015, 38(2): 318-323. doi: 10.7685/j.issn.1000-2030.2015.02.021
    [19]
    Hernández-Camacho J D, Bernier M, López-Lluch G, et al. Coenzyme Q10 supplementation in aging and disease [J]. Frontiers in Physiology, 2018(9): 44.
    [20]
    Carmona M C, Lefebvre P, Lefebvre B, et al. Coadministration of Coenzyme Q prevents Rosiglitazone-induced adipogenesis in ob/ob mice [J]. International Journal of Obesity, 2009, 33(2): 204-211. doi: 10.1038/ijo.2008.265
    [21]
    S Yousef A O, A Fahad A, Abdel Moneim A E, et al. The neuroprotective role of Coenzyme Q10 against lead acetate-induced neurotoxicity is mediated by antioxidant, anti-inflammatory and anti-apoptotic activities [J]. International Journal of Environmental Research and Public Health, 2019, 16(16): 2895. doi: 10.3390/ijerph16162895
    [22]
    马宪, 徐建银. 阿托伐他汀、辅酶Q10联合应用治疗冠心病早期心功能减退效果分析 [J]. 中国药物滥用防治杂志, 2021, 27(6): 875-877.

    Ma X, Xu J Y. Analysis of the effect of atorvastatin and coenzyme Q10 in the treatment of early coronary heart disease hypofunction [J]. Chinese Journal of Drug Abuse Prevention and Treatment, 2021, 27(6): 875-877.
    [23]
    王彬苏, 杨宁, 杨国红, 等. 辅酶Q10在治疗高血压方面的应用进展 [J]. 医学综述, 2018, 24(22): 4416-4420. doi: 10.3969/j.issn.1006-2084.2018.22.010

    Wang B S, Yang N, Yang G H, et al. Advances in application of coenzyme Q10 in treatment of hypertension [J]. Medical Recapitulate, 2018, 24(22): 4416-4420. doi: 10.3969/j.issn.1006-2084.2018.22.010
    [24]
    Omidizadeh M, Kheiri F, Faghani M. Coenzyme Q10 in quail nutrition: effects on growth performance, meat quality, and myostatin gene expression [J]. Livestock Science, 2021(252): 104682.
    [25]
    Yousefian I, Emamverdi M, Karamzadeh-Dehaghani A, et al. Attenuation of cryopreservation-induced oxidative stress by antioxidant: impact of coenzyme Q10 on the quality of post-thawed buck spermatozoa [J]. Cryobiology, 2018(81): 88-93.
    [26]
    张珍瑞, 叶鑫先, 郭凡溪, 等. 饲料中辅酶Q10反相高效液相, 色谱检测方法的建立 [J]. 扬州大学学报(农业与生命科学版), 2016, 37(1): 47-50.

    Zhang Z R, Ye X X, Guo F X, et al. The establishment of RP-HPLC method for determination of coenzyme Q10 in feedstuffs [J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2016, 37(1): 47-50.
    [27]
    包特力根白乙. 中国罗非鱼养殖产业发展及市场前景 [J]. 安徽农业科学, 2014, 42(33): 11956-11958. doi: 10.3969/j.issn.0517-6611.2014.33.121

    Bao T L G B Y. The development and market prospects of Tilapia aquaculture industry in China [J]. Journal of Anhui Agricultural Sciences, 2014, 42(33): 11956-11958. doi: 10.3969/j.issn.0517-6611.2014.33.121
    [28]
    Barducci R S, de Abreu V, Santos A A D, et al. Natural feed additive containing Saccharomyces cerevisiae-originated free nucleotides improves innate immunity, gut histology and disease resistance in Nile tilapia [J]. Animal Feed Science and Technology, 2022(289): 115337.
    [29]
    游文章, 雍文岳, 廖朝兴, 等. 测定鱼类饲料原料营养成分消化率的计算方法 [J]. 水产学报, 1993, 17(2): 167-171.

    You W Z, Yong W Y, Liao C X, et al. The calculating method of digestibility determination of nutrients in fish feed ingredients [J]. Journal of Fisheries of China, 1993, 17(2): 167-171.
    [30]
    AOAC (Association of Official Analytical Chemists) [M]. Animal Feed//Williams S (Eds.), Official Methods of Analysis, 14th edn AOAC, Inc., Arlington, VA, Washington, DC, 1984: 152-161.
    [31]
    董乐, 姚丽梅, 戴聪杰, 等. 大黄鱼β-actin抗体的制备与组织表达谱分析 [J]. 海洋科学, 2014(12): 22-28. doi: 10.11759/hykx20140223003

    Dong L, Yao L M, Dai C J, et al. Expression and purification of β-actin antibody from Larimichthys crocea [J]. Marine Sciences, 2014(12): 22-28. doi: 10.11759/hykx20140223003
    [32]
    吴红霞. 益生元对高糖饲喂尼罗罗非鱼生长性能、脂代谢和肌肉品质的影响 [D]. 上海: 华东师范大学, 2022.

    Wu H X. Effects of prebiotics on the growth performance, lipid metabolism and flesh quality of Nile tilapia (Oreochromis niloticus) fed with high-carbohydrate diet [D]. Shanghai: East China Normal University, 2022.
    [33]
    刘永强. 梯度脂质对吉富罗非鱼幼鱼生长、抗氧化、免疫、脂肪酸代谢及相关基因表达的影响 [D]. 南宁: 广西大学, 2021.

    Liu Y Q. Effect of different dietary lipid levels on the growth performance, antioxidantion, immunity, fatty acid metabolism and related gene expression in juvenile gifi tilapia [D]. Nanning: Guangxi University, 2021.
    [34]
    Geng A L, Guo Y M, Yang Y. Reduction of ascites mortality in broilers by coenzyme Q10 [J]. Poultry Science, 2004, 83(9): 1587-1593. doi: 10.1093/ps/83.9.1587
    [35]
    Gopi M, Purushothaman M R, Chandrasekaran D. Influence of coenzyme Q10 supplementation in high energy broiler diets on production performance, hematological and slaughter parameters under higher environmental temperature [J]. Asian Journal of Animal and Veterinary Advances, 2015, 10(7): 311-322. doi: 10.3923/ajava.2015.311.322
    [36]
    El Basuini M F, Teiba I I, Zaki M A A, et al. Assessing the effectiveness of CoQ10 dietary supplementation on growth performance, digestive enzymes, blood health, immune response, and oxidative-related genes expression of Nile tilapia (Oreochromis niloticus) [J]. Fish & Shellfish Immunology, 2020(98): 420-428.
    [37]
    Huang B Y, Guo Y M, Hu X F, et al. Effects of coenzyme Q10 on growth performance and heart mitochondrial function of broilers under high altitude induced hypoxia [J]. The Journal of Poultry Science, 2011, 48(1): 40-46. doi: 10.2141/jpsa.010084
    [38]
    Bayril T, Akdemir F, Aksit H, et al. Dietary coenzyme Q10 may improve the growth performance and antioxidant status in quails exposed to cold stress [J]. Journal of Animal and Feed Sciences, 2020, 29(1): 67-74. doi: 10.22358/jafs/118790/2020
    [39]
    El-Houseiny W, Abd El-Hakim Y M, Metwally M M M, et al. The single or combined Silybum marianum and co-enzyme Q10 role in alleviating fluoride-induced impaired growth, immune suppression, oxidative stress, histological alterations, and reduced resistance to Aeromonas sobria in African catfish (Clarias gariepinus) [J]. Aquaculture, 2022(548): 737693.
    [40]
    Mantle D, Heaton R A, Hargreaves I P. Coenzyme Q10 and immune function: an overview [J]. Antioxidants, 2021, 10(5): 759. doi: 10.3390/antiox10050759
    [41]
    林军, 李增光, 万荣, 等. 长江口凤鲚产卵群体繁殖力特征 [J]. 上海海洋大学学报, 2022, 31(5): 1023-1031.

    Lin J, Li Z G, Wan R, et al. Fecundity characteristics of spawning stocks of Coilia mystus in Yangtze Estuary [J]. Journal of Shanghai Ocean University, 2022, 31(5): 1023-1031.
    [42]
    龚俊勇, 吴伟坚, 钟国防. 不同水平脂肪酶对罗非鱼生长性能、形体指数及血清生化、免疫指标的影响 [J]. 广东饲料, 2021, 30(1): 25-30. doi: 10.3969/j.issn.1005-8613.2021.01.006

    Gong J Y, Wu W J, Zhong G F. Effects of different levels of lipase on Tilapia growth performance, body index, serum biochemical and immune indexes [J]. Guangdong Feed, 2021, 30(1): 25-30. doi: 10.3969/j.issn.1005-8613.2021.01.006
    [43]
    El Basuini M F, Shahin S A, Teiba I I, et al. The influence of dietary coenzyme Q10 and vitamin C on the growth rate, immunity, oxidative-related genes, and the resistance against Streptococcus agalactiae of Nile tilapia (Oreochromis niloticus) [J]. Aquaculture, 2021(531): 735862.
    [44]
    Henin N, Vincent M F, Gruber H E, et al. Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase [J]. The FASEB Journal, 1995, 9(7): 541-546. doi: 10.1096/fasebj.9.7.7737463
    [45]
    Peters J M, Hennuyer N, Staels B, et al. Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor α-deficient mice [J]. Journal of Biological Chemistry, 1997, 272(43): 27307-27312. doi: 10.1074/jbc.272.43.27307
    [46]
    Sharideh H, Zhandi M, Zeinoaldini S, et al. The effect of dietary coenzyme Q10 on plasma metabolites and hepatic gene expression in broiler breeder hens [J]. British Poultry Science, 2020, 61(3): 281-286. doi: 10.1080/00071668.2020.1720908
    [47]
    Lee S K, Lee J O, Kim J H, et al. Coenzyme Q10 increases the fatty acid oxidation through AMPK-mediated PPARα induction in 3T3-L1 preadipocytes [J]. Cellular Signalling, 2012, 24(12): 2329-2336. doi: 10.1016/j.cellsig.2012.07.022
    [48]
    Wu F, Tian J, Yu L J, et al. Effects of dietary rapeseed meal levels on growth performance, biochemical indices and flesh quality of juvenile genetically improved farmed tilapia [J]. Aquaculture Reports, 2021(20): 100679.
    [49]
    Raeisi Z S, Mirmahmoudi R, Esmaeilipour O, et al. Effects of coenzyme Q10 and vitamin C on growth performance and blood components in broiler chickens under heat stress [J]. Poultry Science Journal, 2017, 5(2): 145-152.
    [50]
    Gabr A A. Effect of coenzyme Q10 and L-carnitine on growth performance, physical and chemical blood indices, antioxidant status and immune response of newborn Egyptian buffalo calves [J]. Egyptian Journal of Nutrition and Feeds, 2020, 23(1): 1-10. doi: 10.21608/ejnf.2020.95797
    [51]
    Singh R B, Shinde S N, Chopra R K, et al. Effect of coenzyme Q10 on experimental atherosclerosis and chemical composition and quality of atheroma in rabbits [J]. Atherosclerosis, 2000, 148(2): 275-282. doi: 10.1016/S0021-9150(99)00273-7
    [52]
    连灵君. 用多项生物标志物评价铅对小鼠的氧化损伤 [D]. 杭州: 浙江大学, 2006.

    Lian L J. Evaluation of oxidative damage induced by lead in mice using multi-biomarkers [D]. Hangzhou: Zhejiang University, 2006.
    [53]
    Geromel V, Darin N, Chrétien D, et al. Coenzyme Q10 and idebenone in the therapy of respiratory chain diseases: rationale and comparative benefits [J]. Molecular Genetics and Metabolism, 2002, 77(1/2): 21-30.
    [54]
    彭亮, 赵鹏, 李彬, 等. 辅酶Q10的人体抗氧化作用研究 [J]. 实用预防医学, 2011, 18(8): 1546-1548. doi: 10.3969/j.issn.1006-3110.2011.08.072

    Peng L, Zhao P, Li B, et al. Study on antioxidant function of coenzyme Q10 on human body [J]. Practical Preventive Medicine, 2011, 18(8): 1546-1548. doi: 10.3969/j.issn.1006-3110.2011.08.072
    [55]
    耿爱莲, 李保明, 呙于明, 等. 辅酶Q10对腹水症敏感肉鸡肝线粒体功能及抗氧化能力的影响 [J]. 动物营养学报, 2006, 18(2): 86-92. doi: 10.3969/j.issn.1006-267X.2006.02.005

    Geng A L, Li B M, Guo Y M, et al. Effects of CoQ10 on hepatic mitochondrial function and anti-oxidative capability in ascites-susceptible broilers [J]. Chinese Journal of Animal Nutrition, 2006, 18(2): 86-92. doi: 10.3969/j.issn.1006-267X.2006.02.005
    [56]
    杨航, 张国奇, 周陆, 等. 复合酶制剂对草鱼生长性能、营养物质利用及肠道组织形态的影响 [J]. 动物营养学报, 2019, 31(11): 5262-5273.

    Yang H, Zhang G Q, Zhou L, et al. Effects of enzyme complex preparation on growth performance, nutrient utilization and intestinal tissue morphology of grass carp (Ctenopharyngodon idella) [J]. Chinese Journal of Animal Nutrition, 2019, 31(11): 5262-5273.
    [57]
    景思佳, 郑慧琳, 张蕾. 肝脏类器官的研究进展 [J]. 中国生物医学工程学报, 2021, 40(2): 237-246.

    Jing S J, Zheng H L, Zhang L. Advances in the development of liver organoids [J]. Chinese Journal of Biomedical Engineering, 2021, 40(2): 237-246.
    [58]
    Kitano M, Watanabe D, Oda S, et al. Subchronic oral toxicity of ubiquinol in rats and dogs [J]. International Journal of Toxicology, 2008, 27(2): 189-215. doi: 10.1080/10915810801978060
    [59]
    陈思琦, 程镇燕, 安贸麟, 等. 豆粕替代鱼粉并添加精氨酸对点带石斑鱼消化酶活性和肠道组织结构的影响 [J]. 中国饲料, 2019(1): 57-64. doi: 10.15906/j.cnki.cn11-2975/s.20190112

    Chen S Q, Cheng Z Y, An M L, et al. Effect of dietary soybean meal replacing fish meal and supplemented with arginine on digestion and intestinal structure of grouper in Epinephelus malabaricus [J]. China Feed, 2019(1): 57-64. doi: 10.15906/j.cnki.cn11-2975/s.20190112
    [60]
    Abdel-Mohsen H H, Wassef E A, El-Bermawy N M, et al. Advantageous effects of dietary butyrate on growth, immunity response, intestinal microbiota and histomorphology of European seabass (Dicentrarchus labrax) fry [J]. Egyptian Journal of Aquatic Biology and Fisheries, 2018, 22(4): 93-110. doi: 10.21608/ejabf.2018.12055
    [61]
    林宜锦, 杨欢, 林鹏志, 等. 饵料中添加肉桂醛对日本鳗鲡肠道结构的影响 [J]. 饲料研究, 2022, 45(11): 52-55. doi: 10.13557/j.cnki.issn1002-2813.2022.11.012

    Lin Y J, Yang H, Lin P Z, et al. Effect of cinnamaldehyde on intestinal structure of Anguilla japonica in diet [J]. Feed Research, 2022, 45(11): 52-55. doi: 10.13557/j.cnki.issn1002-2813.2022.11.012
    [62]
    王海瑞, 胡俊茹, 赵红霞, 等. 饲料中添加丁酸钠对黄颡鱼幼鱼非特异性免疫、抗氧化指标及肠道黏膜形态的影响 [J]. 动物营养学报, 2021, 33(9): 5379-5390. doi: 10.3969/j.issn.1006-267x.2021.09.056

    Wang H R, Hu J R, Zhao H X, et al. Effects of dietary sodium butyrate on non-specific immune, antioxidant indices and intestinal mucosal morphology of Juvenile yellow catfish (Pelteobagrus fulvidraco) [J]. Chinese Journal of Animal Nutrition, 2021, 33(9): 5379-5390. doi: 10.3969/j.issn.1006-267x.2021.09.056
    [63]
    麦浩彬, 郭鑫伟, 王金港, 等. 摄食不同水平饲料蛋白质对珍珠龙胆石斑鱼幼鱼肠道组织形态和菌群组成的影响 [J]. 大连海洋大学学报, 2020, 35(1): 63-70. doi: 10.16535/j.cnki.dlhyxb.2019-123

    Mai H B, Guo X W, Wang J G, et al. Effects of dietary protein levels on intestinal tract histomorphology and microflora composition in juvenile pearl gentian grouper (Epinephelus lanceolatu♂×E. fuscoguttatus♀) [J]. Journal of Dalian Ocean University, 2020, 35(1): 63-70. doi: 10.16535/j.cnki.dlhyxb.2019-123
    [64]
    陶云开, 高雪梅, 袁宗伟, 等. 枸杞多糖对尼罗罗非鱼生长发育、消化酶活性及肠道组织形态的影响 [J]. 南方农业学报, 2022, 53(2): 577-584. doi: 10.3969/j.issn.2095-1191.2022.02.031

    Tao Y K, Gao X M, Yuan Z W, et al. Effects of Lycium barbarum polysaccharides on growth, digestive enzyme activity and intestinal tissue morphology of Nile tilapia (Oreochromis niloticus) [J]. Journal of Southern Agriculture, 2022, 53(2): 577-584. doi: 10.3969/j.issn.2095-1191.2022.02.031
    [65]
    Perumal S S, Shanthi P, Sachdanandam P. Augmented efficacy of tamoxifen in rat breast tumorigenesis when gavaged along with riboflavin, niacin, and CoQ10: effects on lipid peroxidation and antioxidants in mitochondria [J]. Chemico-Biological Interactions, 2005, 152(1): 49-58. doi: 10.1016/j.cbi.2005.01.007
    [66]
    Bittar L F, Mazetto B D M, Orsi F L A, et al. Long-term increased factor Ⅷ levels are associated to interleukin-6 levels but not to post-thrombotic syndrome in patients with deep venous thrombosis [J]. Thrombosis Research, 2015, 135(3): 497-501. doi: 10.1016/j.thromres.2014.12.024
    [67]
    Heidari A, Hamidi G, Soleimani A, et al. Effects of coenzyme Q10 supplementation on gene expressions related to insulin, lipid, and inflammation pathways in patients with diabetic nephropathy [J]. Iranian Journal of Kidney Diseases, 2018, 12(1): 14-21.
    [68]
    Premkumar V G, Yuvaraj S, Vijayasarathy K, et al. Serum cytokine levels of interleukin-1β, -6, -8, tumour necrosis factor-α and vascular endothelial growth factor in breast cancer patients treated with tamoxifen and supplemented with co-enzyme Q10, riboflavin and niacin [J]. Basic & Clinical Pharmacology & Toxicology, 2007, 100(6): 387-391.
    [69]
    Schmelzer C, Lindner I, Rimbach G, et al. Functions of coenzyme Q10 in inflammation and gene expression [J]. BioFactors (Oxford, England) , 2008, 32(1-4): 179-183. doi: 10.1002/biof.5520320121
    [70]
    Zhang Y P, Eber A, Yuan Y, et al. Prophylactic and antinociceptive effects of coenzyme Q10 on diabetic neuropathic pain in a mouse model of type 1 diabetes [J]. Anesthesiology, 2013, 118(4): 945-954. doi: 10.1097/ALN.0b013e3182829b7b
    [71]
    Yoneda T, Tomofuji T, Kawabata Y, et al. Application of coenzyme Q10 for accelerating soft tissue wound healing after tooth extraction in rats [J]. Nutrients, 2014, 6(12): 5756-5769. doi: 10.3390/nu6125756
    [72]
    Baskaran U L, Sabina E P. The food supplement coenzyme Q10 and suppression of antitubercular drug-induced hepatic injury in rats: the role of antioxidant defence system, anti-inflammatory cytokine IL-10 [J]. Cell Biology and Toxicology, 2015, 31(4): 211-219.
    [73]
    郭宝琴, 魏畅, 王轶南, 等. 异育银鲫IgM单克隆抗体的制备及其应用 [J]. 大连海洋大学学报, 2022, 37(3): 450-456. doi: 10.16535/j.cnki.dlhyxb.2021-136

    Guo B Q, Wei C, Wang Y N, et al. Development and application of monoclonal antibody against IgM of silver prussian carp Carassius auratus gibelio [J]. Journal of Dalian Ocean University, 2022, 37(3): 450-456. doi: 10.16535/j.cnki.dlhyxb.2021-136
    [74]
    Khalil A A, Abd-Elhakim Y M, Said E N, et al. Milk thistle and co-enzyme Q10 fortified diets lessen the nickel chloride-induced neurotoxic and neurobehavioral impairments in Oreochromis niloticus via regulating the oxidative stress response, acetylcholinesterase activity, and brain nickel content [J]. Aquaculture, 2022(553): 738102.
    [75]
    Ghasemloo E, Oryan S, Bigdeli M R, et al. The neuroprotective effect of MicroRNA-149-5p and coenzyme Q10 by reducing levels of inflammatory cytokines and metalloproteinases following focal brain ischemia in rats [J]. Brain Research Bulletin, 2021(169): 205-213.
    [76]
    江宇航, 辛维岗, 徐美余, 等. 抑制嗜水气单胞菌乳酸菌的筛选、鉴定及抑菌作用 [J]. 微生物学杂志, 2022, 42(1): 61-66. doi: 10.3969/j.issn.1005-7021.2022.01.008

    Jiang Y H, Xin W G, Xu M Y, et al. Screening, identification, and of lactobacteria inhibition effect of Aeromonas hydrophila [J]. Journal of Microbiology, 2022, 42(1): 61-66. doi: 10.3969/j.issn.1005-7021.2022.01.008
    [77]
    张静, 陈红莲, 鲍俊杰, 等. 水产养殖中嗜水气单胞菌拮抗菌的研究进展 [J]. 江苏农业科学, 2020, 48(17): 21-33. doi: 10.15889/j.issn.1002-1302.2020.17.005

    Zhang J, Chen H L, Bao J J, et al. Research progress on antagonistic microbes of Aeromonas hydrophila in aquaculture [J]. Jiangsu Agricultural Sciences, 2020, 48(17): 21-33. doi: 10.15889/j.issn.1002-1302.2020.17.005

Catalog

    Article views (1423) PDF downloads (82) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return