TANG Zhe, LIN Dong-Xiao, CAI Ming-Lang, ZHANG Jun-Zhi, ZHU Bo, SHI Yong, ZHONG Lei, HU Yi. LOW-FISHMEAL AND HIGH-FAT DIET SUPPLEMENT WITH SOYBEAN LECITHIN ON GROWTH, SERUM BIOCHEMICAL INDEXES AND INTESTINAL FLORA OF RICE FIELD EEL (MONOPTERUS ALBUS)[J]. ACTA HYDROBIOLOGICA SINICA, 2024, 48(3): 361-371. DOI: 10.7541/2024.2023.0223
Citation: TANG Zhe, LIN Dong-Xiao, CAI Ming-Lang, ZHANG Jun-Zhi, ZHU Bo, SHI Yong, ZHONG Lei, HU Yi. LOW-FISHMEAL AND HIGH-FAT DIET SUPPLEMENT WITH SOYBEAN LECITHIN ON GROWTH, SERUM BIOCHEMICAL INDEXES AND INTESTINAL FLORA OF RICE FIELD EEL (MONOPTERUS ALBUS)[J]. ACTA HYDROBIOLOGICA SINICA, 2024, 48(3): 361-371. DOI: 10.7541/2024.2023.0223

LOW-FISHMEAL AND HIGH-FAT DIET SUPPLEMENT WITH SOYBEAN LECITHIN ON GROWTH, SERUM BIOCHEMICAL INDEXES AND INTESTINAL FLORA OF RICE FIELD EEL (MONOPTERUS ALBUS)

Funds: Supported by the National Natural Science Foundation of China (32172986)
  • Received Date: July 17, 2023
  • Rev Recd Date: September 07, 2023
  • Available Online: October 07, 2023
  • Issue Publish Date: February 29, 2024
  • This feeding trial aimed to investigate the effects of soybean lecithin on the growth, serum biochemical indexes and intestinal flora of rice field eel (Monopterus albus) when fed a low-fishmeal and high-fat diet. This research provides a valuable insight into thedevelopment of low-fishmeal feed for M. albus. Eels with an initial body weight of (20.03±0.01) g were selected as the research object. The control group was fed a diet consisting of 42% fish meal, 22% soybean meal and 6% crude fat, while the experimental group received a diet containing 22% fish meal, 52% soybean meal and 9% crude fat to represent the low fish meal and high fat group. Additionally, 1% and 2% soybean lecithin were added to the experimental group. The feeding trial spanned 56d and was conducted in outdoor ponds using cage culture. Alligator weed were laid in the cages and provided as daily feed, comprising 3%—5% of the weight of M. albus. The results showed as follows: (1) compared with the normal fish meal group, the decreased weight gain rate of rice field eel was observed in the low fish meal and high fat group (P<0.05), coupled with the significantly increased value in the feed conversion ratio and hepatosomatic index (P<0.05). Notably, 2% soybean lecithin supplementation contributed to a higher weight gain rate and lower values in the feed conversion ratio and hepatosomatic index of rice field eel compared to the low-fishmeal and high-fat group (P<0.05). (2) Compared with the control group, the levels of serum triglyceride, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, blood ammonia, urea nitrogen, aspartate aminotransferase, alanine aminotransferase, acid phosphatase and immunoglobulin M were significantly increased in rice field eel fed low fish meal and high fat diet (P<0.05). Conversely, the levels of alkaline phosphatase were significantly decreased (P<0.05). The addition of 2% soybean lecithin significantly increased the levels of serum high density lipoprotein and alkaline phosphatase (P<0.05), while levels of serum low density lipoprotein, blood ammonia, urea nitrogen, aspartate aminotransferase, alanine aminotransferase, acid phosphatase and immunoglobulin M were significantly decreased (P<0.05); (3) Compared with the control group, the villus height and number of goblet cells in the hind-gut of the low fish meal and high fat group were significantly decreased (P<0.05), however, these parameters improved after adding 2% soybean lecithin. (4) Compared with the control group, the low fish meal and high-fat group displayed a higher relative abundance of Acinetobacter and Kocuriacould in the intestinal flora. After the addition of 2% soybean lecithin, the microbial community of the rice field eel increased significantly (P<0.05). Furthermore, the relative abundance of intestinal Rhodobacter increased significantly, while Acinetobacter and Kocuria were significantly inhibited (P<0.05). In conclusion, under the conditions of this experiment, it can be inferred that 2% soybean lecithin promote fat metabolism, improve the immune performance of the body, repair the intestinal tissue structure and maintain the homeostasis of the flora. Consequently, it alleviates the negative effects of low-fishmeal and high-fat diet on the growth of rice field eel.

  • [1]
    刘敏, 孙广文, 张海涛, 等. 大菱鲆饲料中鱼粉替代蛋白源的研究进展 [J]. 饲料工业, 2021, 42(10): 23-30. doi: 10.13302/j.cnki.fi.2021.10.004

    Liu M, Sun G W, Zhang H T, et al. Research progress on replacement of fish meal by different protein sources in turbot feed [J]. Feed Industry, 2021, 42(10): 23-30. doi: 10.13302/j.cnki.fi.2021.10.004
    [2]
    唐涛, 钟蕾, 郇志利, 等. 3种大豆产品替代鱼粉对黄鳝生长性能、肠道消化酶活性和血清生化指标的影响 [J]. 动物营养学报, 2019, 31(2): 970-980. doi: 10.3969/j.issn.1006-267x.2019.02.055

    Tang T, Zhong L, Xun Z L, et al. Effects of fish meal replacement by three kinds of soybean products on growth performance, intestinal digestive enzyme activities and serum biochemical indices of rice filed eels (Monopterus albus) [J]. Chinese Journal of Animal Nutrition, 2019, 31(2): 970-980. doi: 10.3969/j.issn.1006-267x.2019.02.055
    [3]
    张俊智, 吕富, 郇志利, 等. 膨化豆粕替代不同比例鱼粉对黄鳝生长性能、体成分、肠道消化酶活力及血清生化指标的影响 [J]. 动物营养学报, 2015, 27(11): 3567-3576. doi: 10.3969/j.issn.1006-267x.2015.11.030

    Zhang J Z, Lyu F, Huan Z L, et al. Effects of fish meal replacement by different proportions of extruded soybean meal on growth performance, body composition, intestinal digestive enzyme activities and serum biochemical indices of rice filed eel (Monopterus albus) [J]. Chinese Journal of Animal Nutrition, 2015, 27(11): 3567-3576. doi: 10.3969/j.issn.1006-267x.2015.11.030
    [4]
    田芊芊, 胡毅, 毛盼, 等. 低鱼粉饲料中添加牛磺酸对青鱼幼鱼生长、肠道修复及抗急性拥挤胁迫的影响 [J]. 水产学报, 2016, 40(9): 1330-1339.

    Tian Q Q, Hu Y, Mao P, et al. Effect of dietary taurine supplementation on growth, intestine structure and resistance to acute crowding stress in juvenile black carp (Mylopharyngodon piceus) fed low fish meal diets [J]. Journal of Fisheries of China, 2016, 40(9): 1330-1339.
    [5]
    罗兴, 毕清竹, 孟晓雪, 等. 高脂饲料中添加含硫氨基酸对大菱鲆脂肪代谢的影响 [J]. 上海海洋大学学报, 2022, 31(4): 893-905.

    Luo X, Bi Q Z, Meng X X, et al. Effects of supplementation of sulfur-containing amino acids in high-lipid diets on lipid metabolism of turbot (Scophthalmus maximus) [J]. Journal of Shanghai Ocean University, 2022, 31(4): 893-905.
    [6]
    Huang Y S, Wen X B, Li S K, et al. Effects of dietary lipid levels on growth, feed utilization, body composition, fatty acid profiles and antioxidant parameters of juvenile chu’s croaker Nibea coibor [J]. Aquaculture International, 2016, 24(5): 1229-1245. doi: 10.1007/s10499-016-9980-5
    [7]
    任昊, 谢雯, 陈倩, 等. 高脂摄入对小鼠空肠微生物群落结构及功能的损伤 [J]. 中国微生态学杂志, 2022, 34(4): 373-380.

    Ren H, Xie W, Chen Q, et al. Damage of high-fat intake on the structure and function of mice jejunum microbial community [J]. Chinese Journal of Microecology, 2022, 34(4): 373-380.
    [8]
    Ma X, Hu Y, Wang X Q, et al. Effects of practical dietary protein to lipid levels on growth, digestive enzyme activities and body composition of juvenile rice field eel (Monopterus albus) [J]. Aquaculture International, 2014, 22(2): 749-760. doi: 10.1007/s10499-013-9703-0
    [9]
    Zhang J, Zhong L, Peng M, et al. Replacement of fish meal with soy protein concentrate in diet of juvenile rice field eel Monopterus albus [J]. Aquaculture Reports, 2019(15): 100235. doi: 10.1016/j.aqrep.2019.100235
    [10]
    郭枫. 饲料脂肪源和脂肪水平对黄鳝生长和代谢的影响 [D]. 江西农业大学, 2019: 46-51.

    Guo F. Effects of dietary lipid species and level on the growth and metabolism of Monopterus albus [D]. Jiangxi Agricultural University, 2019: 46-51.
    [11]
    Hu Y, Zhang J, Cai M, et al. Methionine-mediated regulation of intestinal lipid transportation induced by high-fat diet in rice field eel (Monopterus Albus) [J]. Aquaculture Nutrition, 2023(2023): 1-14.
    [12]
    Shi Y, Zhong L, Zhong H, et al. Taurine supplements in high-fat diets improve survival of juvenile Monopterus albus by reducing lipid deposition and intestinal damage [J]. Aquaculture, 2022(547): 737431. doi: 10.1016/j.aquaculture.2021.737431
    [13]
    邰孟雅, 袁岐山, 杨欣玲, 等. 大豆加工副产物资源化利用研究进展 [J]. 中国酿造, 2023, 42(1): 21-26.

    Tai M Y, Yuan Q S, Yang X L, et al. Research progress in resource utilization of soybean by-products [J]. China Brewing, 2023, 42(1): 21-26.
    [14]
    Huang J, Yang D D, Wang T. Effects of replacing soy-oil with soy-lecithin on growth performance, nutrient utilization and serum parameters of broilers fed corn-based diets [J]. Asian-Australasian Journal of Animal Sciences, 2007, 20(12): 1880-1886. doi: 10.5713/ajas.2007.1880
    [15]
    Yan M, Wang W, Huang X, et al. Interactive effects of dietary cholesterol and phospholipids on the growth performance, expression of immune-related genes and resistance against Vibrio alginolyticus in white shrimp (Litopenaeus vannamei) [J]. Fish and Shellfish Immunology, 2020(97): 100-107. doi: 10.1016/j.fsi.2019.11.048
    [16]
    Li Y, Gao J, Huang S Q. Effects of different dietary phospholipid levels on growth performance, fatty acid composition, PPAR gene expressions and antioxidant responses of blunt snout bream Megalobrama amblycephala fingerlings [J]. Fish Physiology and Biochemistry, 2015, 41(2): 423-436. doi: 10.1007/s10695-014-9994-8
    [17]
    马挺军, 秦晓健, 贾昌喜. 大豆卵磷脂增强免疫活性的研究 [J]. 中国农学通报, 2010, 26(15): 97-99.

    Ma T J, Qin X J, Jia C X. Enhancement effect of soybean lecithin on immune activity [J]. Chinese Agricultural Science Bulletin, 2010, 26(15): 97-99.
    [18]
    El-Katcha M I, Soltan M A, Shewita R, et al. Dietary fiber and lysolecithin supplementation in growing ducks: effect on performance, immune response, intestinal morphology and lipid metabolism-regulating genes [J]. Animals, 2021, 11(10): 2873. doi: 10.3390/ani11102873
    [19]
    Hou S, Li J, Huang J, et al. Effects of dietary phospholipid and cholesterol levels on antioxidant capacity, nonspecial immune response and intestinal microflora of juvenile female crayfish, Procambarus clarkii [J]. Aquaculture Reports, 2022(25): 101245. doi: 10.1016/j.aqrep.2022.101245
    [20]
    Lin Z D, Wang X D, Bu X Y, et al. Dietary phosphatidylcholine affects growth performance, antioxidant capacity and lipid metabolism of Chinese mitten crab (Eriocheir sinensis) [J]. Aquaculture, 2021(541): 736814. doi: 10.1016/j.aquaculture.2021.736814
    [21]
    刘祥, 易新文, 胡毅, 等. 不同蛋白及喷浆玉米皮水平对斑点叉尾鮰生长性能、体色及肠道健康的影响 [J]. 中国饲料, 2023(3): 95-102.

    Liu X, Yi X W, Hu Y, et al. Effects of different protein and corn gluten feed levels on growth performance, body color and intestinal health of channel catfish (Ictalurus punctatus) [J]. China Feed, 2023(3): 95-102.
    [22]
    胡亚军, 胡毅, 郇志利 等. 几种复合蛋白源对黄鳝生长、肌肉氨基酸组成及血清部分生化指标的影响 [J]. 饲料工业, 2017, 38(20): 20-26.

    Hu Y J, Hu Y, Huan Z L, et al. Effects of fish meal replacement by different compound protein on growth, amino acid composition in muscle and serum biochemical indices of rice filed eel (Monopterus albus) [J]. Feed Industry, 2017, 38(20): 20-26.
    [23]
    Adel M, Gholaghaie M, Khanjany P, et al. Effect of dietary soybean lecithin on growth parameters, digestive enzyme activity, antioxidative status and mucosal immune responses of common carp (Cyprinus carpio) [J]. Aquaculture Nutrition, 2017, 23(5): 1145-1152. doi: 10.1111/anu.12483
    [24]
    Xie R T, Amenyogbe E, Chen G, et al. Effects of feed fat level on growth performance, body composition and serum biochemical indices of hybrid grouper (Epinephelus fuscoguttatus × Epinephelus polyphekadion) [J]. Aquaculture, 2021(530): 735813. doi: 10.1016/j.aquaculture.2020.735813
    [25]
    Paul M, Sardar P, Sahu N P, et al. Effect of dietary lipid level on growth performance, body composition, and physiometabolic responses of genetically improved farmed tilapia (GIFT) juveniles reared in inland ground saline water [J]. Aquaculture Nutrition, 2022(2022): 1-15.
    [26]
    Lin Z D, Bu X Y, Wang N, et al. Dietary phospholipid alleviates the adverse effects of high-lipid diet in Chinese mitten crab (Eriocheir sinensis) [J]. Aquaculture, 2021(531): .735899. doi: 10.1016/j.aquaculture.2020.735899
    [27]
    胡亚军, 胡毅, 石勇, 等. 不同形式蛋氨酸对黄鳝生长、血清生化、血清游离氨基酸含量及肌肉品质的影响 [J]. 水生生物学报, 2019, 43(6): 1155-1163.

    Hu Y J, Hu Y, Shi Y, et al. Effects of dietary methionine on growth, serum biochemical indexes, serum free amino acid and muscle texture of rice field eel (Monopterus albus) [J]. Acta Hydrobiologica Sinica, 2019, 43(6): 1155-1163.
    [28]
    何流健. 两种规格斜带石斑鱼n-3高度不饱和脂肪酸和卵磷脂需要量的研究 [D]. 湛江: 广东海洋大学, 2013: 50-51.

    He L J. Requirement of n-3 highly unsaturated fatty acids and lecithin of different specification of grouper (Epinephelus coioides) [D]. Zhanjiang: Guangdong Ocean University, 2013: 50-51.
    [29]
    蔡元丽, 张维铭, 宋志刚. 溶血卵磷脂对肉鸡生长性能、肠道消化酶活性和抗氧化能力的影响 [J]. 动物营养学报, 2021, 33(6): 3210-3217.

    Cai Y L, Zhang W M, Song Z G. Effects of lysophosphatidylcholine on growth performance, intestinal digestive enzyme activity and antioxidant ability of broilers [J]. Chinese Journal of Animal Nutrition, 2021, 33(6): 3210-3217.
    [30]
    Saleh R, Betancor M B, Roo J, et al. Effect of krill phospholipids versus soybean lecithin in microdiets for gilthead seabream (Sparus aurata) larvae on molecular markers of antioxidative metabolism and bone development [J]. Aquaculture Nutrition, 2015, 21(4): 474-488. doi: 10.1111/anu.12177
    [31]
    Ramesh B, Karuna R, Sreenivasa R S, et al. Effect of commiphora mukul gum resin on hepatic marker enzymes, lipid peroxidation and antioxidants status in pancreas and heart of streptozotocin induced diabetic rats [J]. Asian Pacific Journal of Tropical Biomedicine, 2012, 2(11): 895-900. doi: 10.1016/S2221-1691(12)60249-4
    [32]
    陈涛, 沈艺敏, 李仁焕. 饲料脂肪水平对红罗非鱼稚鱼生长性能及血液生化指标的影响 [J]. 饲料研究, 2019, 42(5): 20-23.

    Chen T, Shen Y M, Li R H. Effect of different fat levels on the growth and blood biochemical indices of juvenile red tilapia [J]. Feed Research, 2019, 42(5): 20-23.
    [33]
    Iwashita Y, Suzuki N, Yamamoto T, et al. Supplemental effect of cholyltaurine and soybean lecithin to a soybean meal-based fish meal-free diet on hepatic and intestinal morphology of rainbow trout Oncorhynchus mykiss [J]. Fisheries Science, 2008, 74(5): 1083-1095. doi: 10.1111/j.1444-2906.2008.01628.x
    [34]
    Lallès J. Biology, environmental and nutritional modulation of skin mucus alkaline phosphatase in fish: A review [J]. Fish and Shellfish Immunology, 2019(89): 179-186. doi: 10.1016/j.fsi.2019.03.053
    [35]
    Nigam A K, Kumari U, Mittal S, et al. Comparative analysis of innate immune parameters of the skin mucous secretions from certain freshwater teleosts, inhabiting different ecological niches [J]. Fish physiology and Biochemistry, 2012, 38(5): 1245-1256. doi: 10.1007/s10695-012-9613-5
    [36]
    Ye J, Kaattari M I, Ma C, et al. The teleost humoral immune response [J]. Fish and Shellfish Immunology, 2013, 35(6): 1719-1728. doi: 10.1016/j.fsi.2013.10.015
    [37]
    朱波, 赵青海, 钟蕾, 等. 金针菇菌渣饲料中添加纤维素酶及甘露寡糖对草鱼生长、肠道结构及血清生理生化指标的影响 [J]. 饲料工业, 2021, 42(4): 41-47.

    Zhu B, Zhao Q H, Zhong L, et al. Effects of adding cellulase and mannan oligosaccharides in Flammulina velutipes medium residue diet on growth, intestinal structure and serum biochemical indexes of grass carp [J]. Feed Industry, 2021, 42(4): 41-47.
    [38]
    杨玉芬, 卢德勋, 许梓荣, 等. 日粮纤维对肥育猪消化道发育和消化酶活性的影响 [J]. 福建农业学报, 2003, 18(1): 34-37. doi: 10.3969/j.issn.1008-0384.2003.01.008

    Yang Y F, Lu D X, Xu Z R, et al. Effects of dietary fiber on development of digestive tract and activity of digestive enzyme in finishing pigs [J]. Fujian Journal of Agricultural Sciences, 2003, 18(1): 34-37. doi: 10.3969/j.issn.1008-0384.2003.01.008
    [39]
    Tilocca B, Burbach K, Heyer C M E, et al. Dietary changes in nutritional studies shape the structural and functional composition of the pigs’ fecal microbiome-from days to weeks [J]. Microbiome, 2017, 5(1): 1-15. doi: 10.1186/s40168-016-0209-7
    [40]
    Bradley P H, Pollard K S. Proteobacteria explain significant functional variability in the human gut microbiome [J]. Microbiome, 2017, 5(1): 1-23.
    [41]
    Katsuyama Y. Mining novel biosynthetic machineries of secondary metabolites from Actinobacteria [J]. Bioscience, Biotechnology, and Biochemistry, 2019, 83(9): 1606-1615. doi: 10.1080/09168451.2019.1606700
    [42]
    鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望 [J]. 微生物学报, 2020, 60(9): 1801-1820. doi: 10.13343/j.cnki.wsxb.20200463

    Xian W D, Zhang O, Li W J. Research status and prospect on bacterial Phylum Chloroflexi [J]. Acta Microbiologica Sinica, 2020, 60(9): 1801-1820. doi: 10.13343/j.cnki.wsxb.20200463
    [43]
    郭仕辉, 余永涛, 万佳宏, 等. 变形菌与哺乳动物结肠肠道菌群失调相关研究进展 [J]. 中国微生态学杂志, 2022, 34(4): 479-484.

    Guo S H, Yu Y T, Wan J H, et al. Progress in research on the relationship between Proteobacteria and the imbalance of mammalian colonic intestinal flora [J]. Chinese Journal of Microecology, 2022, 34(4): 479-484.
    [44]
    Sarshar M, Behzadi P, Scribano D, et al. Acinetobacter baumannii: an ancient commensal with weapons of a pathogen [J]. Pathogens, 2021, 10(4): 387. doi: 10.3390/pathogens10040387
    [45]
    Moissenet D, Becker K, Mérens A, et al. Persistent bloodstream infection with Kocuria rhizophila related to a damaged central catheter [J]. Journal of Clinical Microbiology, 2012, 50(4): 1495-1498. doi: 10.1128/JCM.06038-11
    [46]
    曹海鹏, 张书萌, 刁菁, 等. 一株增强中华绒螯蟹抗病力的固氮红细菌SY5的分离鉴定与表征 [J]. 生物技术通报, 2022, 38(11): 277-285.

    Cao H P, Zhang S M, Diao J, et al. Isolation, identification and characterization of rhodobacter azotoformans SY5 with enhancing effect on the disease resistance of Eriocheir sinensis [J]. Biotechnology Bulletin, 2022, 38(11): 277-285.
    [47]
    赵志平, 唐阔, 吉莉莉, 等. 类球红细菌降解亚硝酸盐及其影响因素研究 [J]. 中国调味品, 2021, 46(3): 40-44. doi: 10.3969/j.issn.1000-9973.2021.03.008

    Zhao Z P, Tang K, Ji L L, et al. Research on degradation of nitrite by Rhodobacter sphaeroides and the affecting factors [J]. China Condiment, 2021, 46(3): 40-44. doi: 10.3969/j.issn.1000-9973.2021.03.008

Catalog

    Article views (399) PDF downloads (125) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return