GAO Tian-xiang, ZHANG Xiu-mei, ATANABE eiichi, JIAO Yan. GENETIC RELATIONSHIP AMONG SEVEN GRAPSIDAE SPECIES[J]. ACTA HYDROBIOLOGICA SINICA, 2000, 24(6): 621-629.
Citation: GAO Tian-xiang, ZHANG Xiu-mei, ATANABE eiichi, JIAO Yan. GENETIC RELATIONSHIP AMONG SEVEN GRAPSIDAE SPECIES[J]. ACTA HYDROBIOLOGICA SINICA, 2000, 24(6): 621-629.

GENETIC RELATIONSHIP AMONG SEVEN GRAPSIDAE SPECIES

  • Received Date: November 07, 2011
  • Published Date: November 24, 2000
  • Horizontal starch gel electrophoresis was used to investigate the genetic relationship among seven Grapsidae species: Pachyrapsus crassipes (Grapsinae), Eriocheir japonica, E. sinensis, Hemigrapsus sanguineus, H. penicillatus, Gaetice depressus (Varuninae) and Plagusia dentipes (Plagusiinae). Twelve putative enzymk loci were examined. The average proportion of polymorphic loci and heterozygosity of the seven species were 0.167 and 0.003, 0.250 and 0.036, 0.333 and 0.062, 0.250 and 0.012, 0.083 and 0.002, 0.083 and 0.059, 0.083 and 0.002 respectively. The smallest Nei's genetic distance was 0.011, which was between Eriocheir japonica and E. sinensis . It is known that the Varuninae is near the Grapsinae and Plagusiinae is far from them from Nei's genetic distances.
  • [1]
    Dai A, Yang S.Crabs of the China Seas[M].Beijing: China Ocean Press, 1991.478-482
    [2]
    Sakai T.Crabs of Japan and the Adjacent Seas[M].Tokyo: Kodansha, 1976, 650-653
    [3]
    Japan Fisheries Resource Conservation Association.Population differentiation of marine organisms by isozyme analysis.Report on the genetic assessment project.(ed.by Japan Fisheries Resource Conservation Association)[M], Tokyo:1989,552p(in Japanese)
    [4]
    Shaklee J B, Allendorf F W, Morizot D C, Whitt G S.Gene nomenclature for protein-coding loci in fish[J].Trans.Am.Fish.Soc., 1990,119,2-15
    [5]
    Whitmore D H.Eletrophoretic and isoelectric focusing techniques in fisheries management[M].Boston:CRC Press, 1990,28-30
    [6]
    Nei M.Genetic distance between populations[J].Amer.Nat., 1972, 106,283-292
    [7]
    Gooch J L.Allozyme genetics of life cycle stages of brachyurans[J].Chesapeake Sci, 1977, 18,284-289
    [8]
    Nelson K, Hedgecock D.Enzyme polymorphism and adaptive strategy in the Decapod Crustacea[J].Am.Nat., 1980, 116,238-280
    [9]
    Irawan B, Kijima A, Fujio Y.Genetic divergence among the three species of estuarine crab, Helice tridens, H.japonica, and Chiromantes dehaani (Sesarminae, Grapsidae; Decapoda) [J].Tohoku J.Agr.Res., 1993, 43,101-110
    [10]
    Irawan B, Kijima A.Degree of genetic differentiation among different river populations in two estuarine crabs, Helice tridens and Chiromantes dehaani[J].Tohoku J.Agr.Res., 1994, 44, 49-57
    [11]
    Beckwitt R.Population genetics of the sand crab, Emirita analoga Stimpson, in southern California[J].J.Exp.Mar.Biol, Ecol., 1985,91,45-52
    [12]
    Turner K, Lyerla T A.Electrophoretic variation in sympatric mud crabs from North Inlet, South Carolina[J].Biol.Bull., 1980, 159,418-427
    [13]
    Fuseya R, Watanabe S.Genetic variability in the mud crab genus Scylla (Brachyura:Portunidae)[J].Fisheries Sci., 1996, 62(5),705-709
    [14]
    Li G, Shen Q, Xu Z.Morphometric and biochemical genetic variation of the mitten crab, Eriocheir, in southern China[J].Aquaculture, 1993, 111,103-115
    [15]
    Nei M.Molecular evolutionary genetics[M], New York: Columbia University Press, 1987, 512

Catalog

    Article views (1017) PDF downloads (464) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return