YANG Su-ping, ZHAO Chun-gui, QU Yin-bo, QIAN Xin-min. PROGRESS IN THE RESEARCH ON HYDROGEN PRODUCTION BY PHOTOSYNTHETIC BACTERIA[J]. ACTA HYDROBIOLOGICA SINICA, 2003, 27(1): 85-91.
Citation: YANG Su-ping, ZHAO Chun-gui, QU Yin-bo, QIAN Xin-min. PROGRESS IN THE RESEARCH ON HYDROGEN PRODUCTION BY PHOTOSYNTHETIC BACTERIA[J]. ACTA HYDROBIOLOGICA SINICA, 2003, 27(1): 85-91.

PROGRESS IN THE RESEARCH ON HYDROGEN PRODUCTION BY PHOTOSYNTHETIC BACTERIA

  • Received Date: January 13, 2002
  • Rev Recd Date: July 19, 2002
  • Published Date: January 24, 2003
  • [1]
    Asada Y, Miyake J. Photobiological hydrogen production [J]. J Biosci Bioeng, 1999, 88(1):1-6[2] Nandi R, Sengupta S. Microbial production of hydrogen: An overview [J]. Crit Rev Microbiol, 1998, 24(1): 61-84[3] Miyamoto K. Hydrogen production by photosynthetic bacteria and microalgae [M]. In Recombinant microbes for industrial and agricultural application. Ed by Yoshikatsu M, et al. New York. Basel. Hong Kong. 1994[4] Li Q S, Wei X. Comparison of growth of photosynthetic bacteria in axenic cultures and in co-cultures [J]. Acta Hydrobiologica Sinica, 1998, 22(2):101-105. [李勤生,卫翔. 混合培养对光合细菌生长量的影响[J]. 水生生物学报,1998,22(2):101-105][5] Xu X Y, Yu X E, Zheng P. Research on hydrogen production from organic compounds with immobilized cells of photosynthetic bacteria [J]. Chinese Journal of Biotechnology, 1994, 10(4):362-368. [徐向阳,余秀娥,郑平. 固定化光合细菌利用有机物产氢的研究[J]. 生物工程学报,1994,10(4):362-368][6] Wu Y Q,Chen B J, Chou Z. Studies on Nitrogenase acitivity, Hydrogenase activity and Mechanism of hydrogen production in the dark by Rhodobacter sphaeroids[J]. Microbiology, 1991, 18(2):71-74. [吴永强,陈秉俭,仇哲. 浑球红假单胞菌在暗处发酵生长时的固氮酶、吸氢酶以及放氢机制研究[J]. 微生物学通报,1991,18(2):71-74][7] Zhu H G, Zhao Y L, Shi J L. Affecting factors on hydrogen production by photosynthetic bacteria[J]. Chinese Journal of Applied Ecology, 1997, 8(2):194-198. [朱核光,赵琦琳,史家梁. 光合细菌 Rhodopseudomonas 产氢的影响因子的试验研究[J]. 应用生态学报,1997,8(2):194-198][8] Chen Y D, Li L B. 11th the international symposium on photosynthesis [J]. Acta Biophysica Sinica, 1999, 15(1):232-235. [陈耀东,李良壁. 第十一届国际光合作用研究会议情况简介[J]. 生物物理学报,1999,15(1):232-235][9] Gest H, Ormerod, JG, Ormerod, KS. Photometabolism of R.rubrum. Light-dependent dissimilation of organic compounds to carbon dioxide and molecular hydrogen by an anaerobic citric acid cycle [J]. Arch Biochem Biophys, 1962, 97: 21[10] Willison JC, Madern D, Vignais, P.M. Increased photoproduction of hydrogen by non-autrophic nutants of Rhodopseudomonas capsulata [J]. Biochem J, 1984, 219: 583[11] Hustade E, Steinbuchel A, Schlegel, HG. Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulfur bacteria [J]. Appl. Microbiol, Biotechnol. 1993, 39: 87[12] Jahn A, Keuntie B, Dorffler M, Klipp W, et al. Optimizing Photoheterotrophic H2 production by Rhodobacter capsulatus upon interposon mutagenesis in the hupL gene [J]. Appl. Microbiol Biotechnol, 1994, 40, 687[13] Seon YH, Lee CG, Park DH, et al. Hydrogen production by immobilized cells in the nozzle loop bioreactor [J]. Biotechnol Lett, 1993, 15, 1275[14] Liu S J, Yang H F, Zhou P J. Hydrogen production from toufu wastewater with immobilized cells of photosynthetic bacteria[J]. Environmental Science, 1995, 16(1):42. [刘双江,杨惠芳,周培瑾. 固定化光合细菌处理豆制品废水产氢研究[J]. 环境科学,1995,16(1):42][15] Zurrer H, Bachofen R. Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum [J]. Appl Environ. Microbiol, 1979, 37, 789[16] Xu X Y,Yu X E, Zheng P. Kinetics of substrate utilization for hydrogen production with immobilized cells of photosynthetic bacteria[J]. Chinese Journal of Biotechnology, 1995, 11(1):51-57. [徐向阳, 余秀娥,郑平. 固定化光合细菌产氢过程的基质利用动力学[J]. 生物工程学报,1995,11(1):51-57][17] Weetall H,Sharma BP, Detar CC. Photometabolic production of H2 from organic substrates by free and immobilized mixed cultures of Rhodospirillum rubrum and Klebsiella pneumoniae [J]. Biotechnol Bioeng, 1981, 23,605[18] Odom J.M,Wall JD.Photoproduction of H2 from cellulose by an anaerobic bacterial coculture [J]. Appl. Environ Microbiol,1983,45,1300[19] Miyake J.Photoproduction of hydrogen from glucose by a co-culture of a photosynthetic bacterium and Clostridium butyricum[J]. J Fermt Technol,1984,62(6):531-535[20] Miura Y, Matsuoka S,Miyamoto K,Saitoh C. Stably sustained hydrogen production with high molar yield through a combination of a marine green alga and a photosynthetic bacteria[J]. Biosci Biotech Biochem, 1992, 56,751-754[21] Ike A, Saimura C, Hirata K, Miyamoto K. Hydrogen photo-production from CO2-fixing microalgal biomass: application of halo-torelant photosynthetic bacteria[J]. J Ferment. Bioeng, 1997,84,606-609[22] Yokio H, Shingo M, Hirose J, Sachio H, Yoshiyuki T. H2 production from starch by a mixed culture of Clostrium butyricum and Rhodobacter sp. M-19[J]. Biotechnology Letter 1998, 20(9):895-899[23] Wakayama T, Asada Y, Miyake J. Effect of light/dark cycle on bacterial hydrogen production by Rhodobacter sphaeroides RV from hour to second range [J]. Appiled Biochem Biotech 2000. 84-86:431-440[24] Wu D Q, Qian X M. Advance in regulation and expression of photosynthesis gene in purple non-sulfur bacteria [J]. Microbiology, 1996, 23(2):115-121. [吴大庆,钱新民. 紫色非硫细菌光合基因表达调控研究进展[J]. 微生物学通报,1996,23(2):115-121][25] Zhang C X, Fan H J, Li L B, Kuang T Y. Studies on primary reaction of photosynthetic bacteria [J]. Science in China, 1999, 29(3):276-280. [张纯喜,樊红军,李良壁,匡廷云. 光合细菌原初反应的理论研究[J]. 中国科学C辑,1999,29(3):276-280][26] Chen S P. Environmental Biotechnology[M]. Nanjing: Nanjing University Press. 1994, 230-233. [程树培. 环境生物技术[M]. 南京:南京大学出版社,1994,230-233][27] Jouanneau Y,Kelley BC,Berlier Y,Lespinat PA,Vignaisi PM.Continuous monitoring by mass spectrometry of H2 production and recycling in Rhodopseudomonas capsulata[J]. J Bacteriol, 1980, 143(2):628-36[28] Gorrell TE,Uffen R L. Fermentative metabolism of pyruvate by Rhodospirillum rubrum after anaerobic growth in darkness [J]. J Bacteriol, 1977, 131,533[29] Gorrell TE,Uffen R.L. Photoproduction of hydrogen gas and catabolism of pyruvate by Rhodospirilium rubrum grown anaerobically in the dark and in the light[J]. Photochem. Photobiol, 1978. 27,351[30] Siefert E,et al. Hydrogen metabolism and nitrogen fixation in wild type and nif mutants of Rhodopseudomonas acidophila [J]. Biochimie, 1978, 60, 261[31] Wu Y Q, Song H Y. Advance in the study on molecular biology of nitrogen fixation in photosynthetic bacteria[J]. Plant Physiology Communication, 1991, 27, 161. [吴永强,宋鸿遇. 光合细菌固氮分子生物学研究进展[J]. 植物生理学通讯,1991,27,161][32] Adams MWW, Edward S. Biological hydrogen production: Not so elementary [J]. Science, 1998, 4: 282, 1842-1843[33] Anne V., Marie HC Frontecilla JC. Crystal structure of the nickel-iron hydrogenase from Desulfovubrio gigas[J]. Nature. 1995, 373:580-587[34] John W P. Structure and mechanism of iron-only hydrogenases[J],Current Opi Strul Biol, 1999, 9: 670-676[35] Zhang M, Shi J L. Mechanism of hydrogen production by photosynthetic bacteria[J]. Chinese Journal of Applied Environment of Biotechnology, 1999, 5(sup):25-29. [张明,史家梁. 光合细菌光合产氢机理研究进展[J]. 应用与环境生物学报,1999,5(sup):25-29][36] Long M N, Zhang F Z, Xu L S. Gene cloning of small subunit of soluble hydrogenase from Chromatium vinosum[J]. Journal of Xiamen University Science, 2000, 39(2):247-252. [张凤章,许良树. 光合细菌可溶性氢酶小亚基的克隆[J]. 厦门大学学报(自然科学版),2000,39(2):247-252][37] Koch HG,Kern M,Klemme,JH.Reinvestigation of regulation of biosynthesis and subunit composition of nickel-dependent Hup hydrogenase of Rhodospirilium rubrum [J]. FEMS Microbiol. Lett, 1992, 91, 193[38] Woodward J,Mattingly SM,Danson M,Hough D,Ward N,Adams M. In vitro hydrogen production by glucose dehydrogenase and hydrogenase[J]. Nature Biotechnol,1996,14(7):872-4[39] Liang L, Zhu M Z, Wu Y Q. Studies on the construction and expression of gln B-LacZ fusion[J]. Acta Phytophysiologica Sinica, 1999, 25(3):149-2552. [梁莉,朱美珍,吴永强. 光合细菌 Rhodobacter sphaeroides gln B-LacZ融合子的构建与表达[J]. 植物生理学报,1999,25(3):149-2552][40] You C B, Jiang Y M, Song H Y. Biological fixation of nitrogen[M]. Science Press. 1987. [尤崇杓,姜涌明,宋鸿遇. 生物固氮[M]科学出版社,1987]

    Asada Y, Miyake J. Photobiological hydrogen production [J]. J Biosci Bioeng, 1999, 88(1):1-6[2] Nandi R, Sengupta S. Microbial production of hydrogen: An overview [J]. Crit Rev Microbiol, 1998, 24(1): 61-84[3] Miyamoto K. Hydrogen production by photosynthetic bacteria and microalgae [M]. In Recombinant microbes for industrial and agricultural application. Ed by Yoshikatsu M, et al. New York. Basel. Hong Kong. 1994[4] Li Q S, Wei X. Comparison of growth of photosynthetic bacteria in axenic cultures and in co-cultures [J]. Acta Hydrobiologica Sinica, 1998, 22(2):101-105. [李勤生,卫翔. 混合培养对光合细菌生长量的影响[J]. 水生生物学报,1998,22(2):101-105][5] Xu X Y, Yu X E, Zheng P. Research on hydrogen production from organic compounds with immobilized cells of photosynthetic bacteria [J]. Chinese Journal of Biotechnology, 1994, 10(4):362-368. [徐向阳,余秀娥,郑平. 固定化光合细菌利用有机物产氢的研究[J]. 生物工程学报,1994,10(4):362-368][6] Wu Y Q,Chen B J, Chou Z. Studies on Nitrogenase acitivity, Hydrogenase activity and Mechanism of hydrogen production in the dark by Rhodobacter sphaeroids[J]. Microbiology, 1991, 18(2):71-74. [吴永强,陈秉俭,仇哲. 浑球红假单胞菌在暗处发酵生长时的固氮酶、吸氢酶以及放氢机制研究[J]. 微生物学通报,1991,18(2):71-74][7] Zhu H G, Zhao Y L, Shi J L. Affecting factors on hydrogen production by photosynthetic bacteria[J]. Chinese Journal of Applied Ecology, 1997, 8(2):194-198. [朱核光,赵琦琳,史家梁. 光合细菌 Rhodopseudomonas 产氢的影响因子的试验研究[J]. 应用生态学报,1997,8(2):194-198][8] Chen Y D, Li L B. 11th the international symposium on photosynthesis [J]. Acta Biophysica Sinica, 1999, 15(1):232-235. [陈耀东,李良壁. 第十一届国际光合作用研究会议情况简介[J]. 生物物理学报,1999,15(1):232-235][9] Gest H, Ormerod, JG, Ormerod, KS. Photometabolism of R.rubrum. Light-dependent dissimilation of organic compounds to carbon dioxide and molecular hydrogen by an anaerobic citric acid cycle [J]. Arch Biochem Biophys, 1962, 97: 21[10] Willison JC, Madern D, Vignais, P.M. Increased photoproduction of hydrogen by non-autrophic nutants of Rhodopseudomonas capsulata [J]. Biochem J, 1984, 219: 583[11] Hustade E, Steinbuchel A, Schlegel, HG. Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulfur bacteria [J]. Appl. Microbiol, Biotechnol. 1993, 39: 87[12] Jahn A, Keuntie B, Dorffler M, Klipp W, et al. Optimizing Photoheterotrophic H2 production by Rhodobacter capsulatus upon interposon mutagenesis in the hupL gene [J]. Appl. Microbiol Biotechnol, 1994, 40, 687[13] Seon YH, Lee CG, Park DH, et al. Hydrogen production by immobilized cells in the nozzle loop bioreactor [J]. Biotechnol Lett, 1993, 15, 1275[14] Liu S J, Yang H F, Zhou P J. Hydrogen production from toufu wastewater with immobilized cells of photosynthetic bacteria[J]. Environmental Science, 1995, 16(1):42. [刘双江,杨惠芳,周培瑾. 固定化光合细菌处理豆制品废水产氢研究[J]. 环境科学,1995,16(1):42][15] Zurrer H, Bachofen R. Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum [J]. Appl Environ. Microbiol, 1979, 37, 789[16] Xu X Y,Yu X E, Zheng P. Kinetics of substrate utilization for hydrogen production with immobilized cells of photosynthetic bacteria[J]. Chinese Journal of Biotechnology, 1995, 11(1):51-57. [徐向阳, 余秀娥,郑平. 固定化光合细菌产氢过程的基质利用动力学[J]. 生物工程学报,1995,11(1):51-57][17] Weetall H,Sharma BP, Detar CC. Photometabolic production of H2 from organic substrates by free and immobilized mixed cultures of Rhodospirillum rubrum and Klebsiella pneumoniae [J]. Biotechnol Bioeng, 1981, 23,605[18] Odom J.M,Wall JD.Photoproduction of H2 from cellulose by an anaerobic bacterial coculture [J]. Appl. Environ Microbiol,1983,45,1300[19] Miyake J.Photoproduction of hydrogen from glucose by a co-culture of a photosynthetic bacterium and Clostridium butyricum[J]. J Fermt Technol,1984,62(6):531-535[20] Miura Y, Matsuoka S,Miyamoto K,Saitoh C. Stably sustained hydrogen production with high molar yield through a combination of a marine green alga and a photosynthetic bacteria[J]. Biosci Biotech Biochem, 1992, 56,751-754[21] Ike A, Saimura C, Hirata K, Miyamoto K. Hydrogen photo-production from CO2-fixing microalgal biomass: application of halo-torelant photosynthetic bacteria[J]. J Ferment. Bioeng, 1997,84,606-609[22] Yokio H, Shingo M, Hirose J, Sachio H, Yoshiyuki T. H2 production from starch by a mixed culture of Clostrium butyricum and Rhodobacter sp. M-19[J]. Biotechnology Letter 1998, 20(9):895-899[23] Wakayama T, Asada Y, Miyake J. Effect of light/dark cycle on bacterial hydrogen production by Rhodobacter sphaeroides RV from hour to second range [J]. Appiled Biochem Biotech 2000. 84-86:431-440[24] Wu D Q, Qian X M. Advance in regulation and expression of photosynthesis gene in purple non-sulfur bacteria [J]. Microbiology, 1996, 23(2):115-121. [吴大庆,钱新民. 紫色非硫细菌光合基因表达调控研究进展[J]. 微生物学通报,1996,23(2):115-121][25] Zhang C X, Fan H J, Li L B, Kuang T Y. Studies on primary reaction of photosynthetic bacteria [J]. Science in China, 1999, 29(3):276-280. [张纯喜,樊红军,李良壁,匡廷云. 光合细菌原初反应的理论研究[J]. 中国科学C辑,1999,29(3):276-280][26] Chen S P. Environmental Biotechnology[M]. Nanjing: Nanjing University Press. 1994, 230-233. [程树培. 环境生物技术[M]. 南京:南京大学出版社,1994,230-233][27] Jouanneau Y,Kelley BC,Berlier Y,Lespinat PA,Vignaisi PM.Continuous monitoring by mass spectrometry of H2 production and recycling in Rhodopseudomonas capsulata[J]. J Bacteriol, 1980, 143(2):628-36[28] Gorrell TE,Uffen R L. Fermentative metabolism of pyruvate by Rhodospirillum rubrum after anaerobic growth in darkness [J]. J Bacteriol, 1977, 131,533[29] Gorrell TE,Uffen R.L. Photoproduction of hydrogen gas and catabolism of pyruvate by Rhodospirilium rubrum grown anaerobically in the dark and in the light[J]. Photochem. Photobiol, 1978. 27,351[30] Siefert E,et al. Hydrogen metabolism and nitrogen fixation in wild type and nif mutants of Rhodopseudomonas acidophila [J]. Biochimie, 1978, 60, 261[31] Wu Y Q, Song H Y. Advance in the study on molecular biology of nitrogen fixation in photosynthetic bacteria[J]. Plant Physiology Communication, 1991, 27, 161. [吴永强,宋鸿遇. 光合细菌固氮分子生物学研究进展[J]. 植物生理学通讯,1991,27,161][32] Adams MWW, Edward S. Biological hydrogen production: Not so elementary [J]. Science, 1998, 4: 282, 1842-1843[33] Anne V., Marie HC Frontecilla JC. Crystal structure of the nickel-iron hydrogenase from Desulfovubrio gigas[J]. Nature. 1995, 373:580-587[34] John W P. Structure and mechanism of iron-only hydrogenases[J],Current Opi Strul Biol, 1999, 9: 670-676[35] Zhang M, Shi J L. Mechanism of hydrogen production by photosynthetic bacteria[J]. Chinese Journal of Applied Environment of Biotechnology, 1999, 5(sup):25-29. [张明,史家梁. 光合细菌光合产氢机理研究进展[J]. 应用与环境生物学报,1999,5(sup):25-29][36] Long M N, Zhang F Z, Xu L S. Gene cloning of small subunit of soluble hydrogenase from Chromatium vinosum[J]. Journal of Xiamen University Science, 2000, 39(2):247-252. [张凤章,许良树. 光合细菌可溶性氢酶小亚基的克隆[J]. 厦门大学学报(自然科学版),2000,39(2):247-252][37] Koch HG,Kern M,Klemme,JH.Reinvestigation of regulation of biosynthesis and subunit composition of nickel-dependent Hup hydrogenase of Rhodospirilium rubrum [J]. FEMS Microbiol. Lett, 1992, 91, 193[38] Woodward J,Mattingly SM,Danson M,Hough D,Ward N,Adams M. In vitro hydrogen production by glucose dehydrogenase and hydrogenase[J]. Nature Biotechnol,1996,14(7):872-4[39] Liang L, Zhu M Z, Wu Y Q. Studies on the construction and expression of gln B-LacZ fusion[J]. Acta Phytophysiologica Sinica, 1999, 25(3):149-2552. [梁莉,朱美珍,吴永强. 光合细菌 Rhodobacter sphaeroides gln B-LacZ融合子的构建与表达[J]. 植物生理学报,1999,25(3):149-2552][40] You C B, Jiang Y M, Song H Y. Biological fixation of nitrogen[M]. Science Press. 1987. [尤崇杓,姜涌明,宋鸿遇. 生物固氮[M]科学出版社,1987]
  • Cited by

    Periodical cited type(4)

    1. 蒙彦晓,王桂华,熊冬梅,刘海侠,张建禄,王继隆,王立新,刘小林. 基于形态学差异探讨秦岭细鳞鲑亚种有效性问题. 水生生物学报. 2018(03): 550-560 . 本站查看
    2. 徐敬明,杨明柳,吴斌,阎冰. 中国沿海双齿近相手蟹9个群体形态差异分析. 四川动物. 2015(04): 481-488 .
    3. 平洪领,李玉全. 逐步线性回归法实现天津厚蟹(Helice tientsinensis)表型性状与体重的通径分析. 海洋与湖沼. 2013(05): 1353-1357 .
    4. 徐敬明,孙翰昌,孙世春. 厚蟹线粒体16S rRNA基因序列分析及系统发育研究. 海洋学报(中文版). 2011(05): 124-132 .

    Other cited types(6)

Catalog

    Article views (1002) PDF downloads (553) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return