底泥再悬浮对东湖水体初级生产力的影响

黄宇波, 罗浩, 陈隽, 毕永红, 吕锦刚, 盛祥雪, 胡征宇

黄宇波, 罗浩, 陈隽, 毕永红, 吕锦刚, 盛祥雪, 胡征宇. 底泥再悬浮对东湖水体初级生产力的影响[J]. 水生生物学报, 2016, 40(3): 574-579. DOI: 10.7541/2016.77
引用本文: 黄宇波, 罗浩, 陈隽, 毕永红, 吕锦刚, 盛祥雪, 胡征宇. 底泥再悬浮对东湖水体初级生产力的影响[J]. 水生生物学报, 2016, 40(3): 574-579. DOI: 10.7541/2016.77
HUANG Yu-Bo, LUO Hao, CHEN Jun, BI Yong-Hong, LÜ Jin-Gang, SHENG Xiang-Xue, HU Zheng-Yu. EFFECTS OF RE-SUSPENDED SEDIMENT ON THE PRIMARY PRODUCTION IN THE DONGHU LAKE[J]. ACTA HYDROBIOLOGICA SINICA, 2016, 40(3): 574-579. DOI: 10.7541/2016.77
Citation: HUANG Yu-Bo, LUO Hao, CHEN Jun, BI Yong-Hong, LÜ Jin-Gang, SHENG Xiang-Xue, HU Zheng-Yu. EFFECTS OF RE-SUSPENDED SEDIMENT ON THE PRIMARY PRODUCTION IN THE DONGHU LAKE[J]. ACTA HYDROBIOLOGICA SINICA, 2016, 40(3): 574-579. DOI: 10.7541/2016.77

底泥再悬浮对东湖水体初级生产力的影响

基金项目: 

武汉市重度人工干扰下水环境污染处置及综合控制关键技术研究项目资助

EFFECTS OF RE-SUSPENDED SEDIMENT ON THE PRIMARY PRODUCTION IN THE DONGHU LAKE

Funds: 

Supported by the Research on the Key Technologies of Water Pollution Disposal And Comprehensive Control Project under the Severe Manual Interference

  • 摘要: 为研究底泥再悬浮对东湖初级生产力的影响, 通过模拟东湖通道施工导致的底泥再悬浮过程, 用原位黑白瓶法测量了水体初级生产力, 同步测定受试水体的光强、营养盐以及藻类叶绿素荧光活性, 结果表明, 随着再悬浮底泥含量的增加, 水体出现明显的光衰减现象, 光强显著降低(P0.05); 总氮总磷浓度升高; 藻类最大光化学效率(Fv/Fm)上升; 水体呼吸作用显著增强(P0.05), 总初级生产力与净初级生产力先增大后减小。与不含再悬浮底泥的对照组相比, 水体再悬浮底泥含量50100 g/L处理组具有较高的初级生产力; 相对其他处理组, 再悬浮底泥含量200 g/L处理组的初级生产力显著降低(P0.05), 且其净初级生产力为负值。研究结果表明, 在一定范围内的底泥再悬浮通过增加水体营养盐含量的方式提高水体初级生产力, 较大含量的再悬浮底泥则通过影响水体光强降低初级生产力, 该结果确认了东湖通道施工引起的底泥再悬浮对水域生态系统的影响, 值得引起关注和重视。
    Abstract: To examine the effect of suspended sediment on the primary production in the Donghu Lake, field investigation was carried out with the modified black and white bottles. The light intensity, nutrient concentrations and chlorophyll fluorescence were measured. The results showed that with the increased content of resuspended sediments, light intensity decreased significantly (P0.05), TP concentration and the maximum photochemical efficiency (Fv/Fm) increased significantly (P0.05), the respiration was significantly enhanced (P0.05), the gross primary productivity and net primary productivity increased at first and then decreased. Suspended sediment at 50100 g/L significantly increased primary productivity via the enrichment of the nutrient but dramatically repressed the gross primary productivity at 200 g/L even with a negative net primary productivity through significantly decreasing the light intensity in the water column (P0.05). We revealed the impacts of Donghu Channel project on the freshwater ecosystem of the Donghu Lake, which need further attention.
  • [1]

    Yue C F, Li Y M, Zha Y, et al. Inversion of hyperspectral reflectance for estimating suspended matter concentration in Lake Tai [J]. Acta Scientiae Circumstantiae, 2008, 28(10): 21482155 [乐成峰, 李云梅, 查勇, 等. 太湖悬浮物对水体生态环境的影响极其高光谱反演. 环境科学学报, 2008, 28(10): 21482155]

    [2]

    Hu X Z, Liu Q, Li Y J. The controlling of plants rebuild engineering on sediment resuspension and nutrient release in Fubao Bay of the Dianchi Lake [J]. China Environmental Science, 2012, 32(7): 12881292 [胡小贞, 刘倩, 李英杰. 滇池福保湾植被重建对底泥再悬浮及营养盐释放的控制. 中国环境科学, 2012, 32(7): 12881292]

    [3]

    Lawson S E, Wiberg P L, McGIathery K J, et al. Wind-driven sediment suspension controls light availability in a shallow coastal lagoon [J]. Estuaries and Coasts, 2007, 30(1): 102112

    [4]

    Editorial Committee of Monitoring and Analytical Methods of Water and Wastewater of the State Environmental Protection Administration of China. Monitoring and Analytical Methods of Water and Wastewater (3th Edition) [M]. Beijing: China Environmental Science Press. 1989, 246268 [国家环境保护局. 水和废水监测分析方法(第三版). 北京: 中国环境科学出版社. 1989, 246248]

    [5]

    Wang X D, Qin B Q, Liu L Z, et al. Effects of experimental sediment suspension on the nutrients release and growth of algal bloom [J]. Resources and Environment in the Yangtze Basin, 2011, 20(1): 14811487 [王小冬, 秦伯强, 刘丽贞, 等. 底泥悬浮对营养盐释放和水华生长影响的模拟. 长江流域资源与环境, 2011, 20(1): 14811487]

    [6]

    Zhang Z S, Huang X F. Research Method of plankton in Fresh Water [M]. Beijing: Science Press. 1991, 351353 [章宗涉, 黄翔飞. 淡水浮游生物研究方法. 北京:科学出版社.1991, 351353]

    [7]

    Qin B Q. Approaches to mechanisms and control of eutrophication of shallow lakes in the middle and lower reaches of the Yangze River [J]. Journal of Lake Science, 2002, 14(3): 193202 [秦伯强. 长江中下游浅水湖泊富营养化发生机制与控制途径初探. 湖泊科学, 2002, 14(3): 193202]

    [8]

    Elisabeth H S, Gerard B, Elly P H, et al. Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophuic growth [J]. Hydrobiologia, 2001, 444: 2542

    [9]

    Zeng T H, Liu G X, Hu Z Y. Estimation of phytoplankton primary production of lakes in the middle and lower reaches of the Yangtze River [J]. Resources and Environment in the Yangtze Basin, 2011, 20(6): 717722 [曾台衡, 刘国祥, 胡征宇. 长江中下游湖区浮游植物初级生产力估算. 长江流域资源与环境, 2011, 20(6): 717722]

    [10]

    Cai L L, Zhu G W, Li X Y. Characteristic of phytoplankton primary productivity and influencing factors in littoral zone of Lake Taihu [J]. Acta Ecologica Sinica, 2013, 33(22): 72507258 [蔡琳琳, 朱广伟, 李向阳. 太湖湖岸带浮游植物初级生产力特征及影响因素.生态学报, 2013, 33(22): 72507258]

    [11]

    Zhang Y L, Feng S, Ma R H, et al. Spatial pattern of euphotic depth and estimation of phytoplankton primary production in Lake Taihu in autumn 2004 [J]. Journal of Lake Science, 2008, 20(3): 380388 [张运林, 冯胜, 马荣华, 等. 太湖秋季真光层深度空间分布及浮游植物初级生产力的估算. 湖泊科学, 2008, 20(3): 380388]

    [12]

    Yu J H, Zhong J C, Zhang Y L, et al. Simulation of influence of dredging on sediment resuspention and nutrient loading in lake [J]. Journal of Lake Science, 2012, 24(1): 3442 [余居华, 钟继承, 张银龙, 等. 湖泊底泥疏浚对沉积物再悬浮及营养盐负荷影响的模拟. 湖泊科学, 2012, 24(1): 3442]

    [13]

    Ogilvie B G, Mitchell S F. Does sediment resuspension have persistent effects on phytoplankton? Experimental studies in three shallow lakes [J]. Freshwater Biology, 1998, 40(1): 5163

    [14]

    Amand A L ST, Soranno P A, Carpenter S R, et al. Algal nutrient deficiency: growth bioassays versus physiological indicators [J]. Lake and Reservoir Management, 1989, 5(1): 2735

    [15]

    Sakamoto M, Hayashi H, Otsuki A, et al. Role of bottom sediments in sustaining plankton production in a Lake ecosystem- Experimental demonstration using enclosed water bodies in a Shallow Eutrophic Lake [J]. Ecological Research, 1989, 4(1): 116

    [16]

    Consalvey M, R G Perkins, D M Paterson, et al. Pam fluorescence: a beginners guide for benthic diatomists[J]. Diatom Research, 2005, 20(1): 122

    [17]

    Hou X F, Guo P Y, Zhang H X, et al. Effects of water suspended particular matter on the physiological and photosynthetic activity of Scenedesmus obliguus [J]. Acta Scientiae Cirumstantiae, 2013, 33(5): 14461457 [侯秀富, 郭沛涌, 张华想, 等. 水体悬浮颗粒物对斜生栅藻生理生化活及光合性的影响. 环境科学学报, 2013, 33(5): 14461457]

    [18]

    Zhang Y L, Qin B Q, Hu W P, et al. Temporal-spatial variations of euphotic depth of typical lake regions in Lake Taihu and its ecological environmental significance [J]. Science in China Series D, 2006, 49(4): 431442 [张运林, 秦伯强, 胡维平, 等. 太湖典型湖区真光层深度的时空变化及其生态意义. 中国科学(D辑: 地球科学), 2006, 49(4): 287296]

    [19]

    Zhang Y L, Qin B Q, Chen W M, et al. A study on total suspended matter in Lake Taihu [J]. Resource and Environment in the Yangtz Basin, 2004, 13(3): 266271 [张运林, 秦伯强, 陈伟民, 等. 太湖水体中悬浮物研究. 长江流域资源与环境, 2004, B(3): 266271]

    [20]

    Zhang Y L, Qin B Q, Chen W M, et al. Experimental study on underwater light intensity and primary productivity caused by variation of total suspended matter [J]. Advances in Water Science, 2004, 15(5): 615620 [张运林, 秦伯强, 陈伟民, 等. 悬浮物浓度对水下光照和初级生产力的影响. 水科学进展, 2004, 15(5): 615620]

    [21]

    Moore K A, Wetzel R L. Seasonal variations in eelgrass (Zostera marina L.) responses to nutrient enrichment and reduced light availability in experimental ecosystems [J]. Journal of Experimental Marine Biology and Ecology, 2000, 244(1): 128

    [22]

    Dennison W C , Alberta R S. Photosynthetic responses of Zostera marina L. (Eelgrass) to in situ manipulations of light intensity [J]. Oecologia, 1982, 55(22): 137144.

    [23]

    Ni H G, Li X Z, Luo G Y. Analysis of environmental effects of Nanjing Xuanwu Lake subaqueous highway tunnel [J]. Geological Journal of China Universities, 1998, 4(2): 212219 [倪宏革, 李晓昭, 罗国煜. 南京玄武湖水底交通隧道工程与环境效应分析. 高校地质学报, 1998, 4(2): 212219]

    [24]

    Li S S, L J G, Gao X, et al. Influence of the East Lake channel project on Macrophytes in nearby waters [J]. Journal of Hydroecology, 2015, 36(2): 1824 [李双双, 吕锦刚, 高翔, 等.东湖通道工程对沿线水域水生植物的影响. 水生态学杂志, 2015, 36(2):1824]

    [25]

    Roozen, Frank C J M, Lurling, M, et al. Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes [J]. Freshwater Biology, 2007, 52(6): 977987泊科学, 2002, 14(3):193-202]

    [26]

    Elisabeth HS, Gerard B, Elly PH, et al. Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophuic growth[J]. Hydrobiologia, 2001, 444:25-42

    [27]

    Zeng TH, Liu GX, Hu ZY. Estimation of phytoplankton primary production of lakes in the middle and lower reaches of the Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2011, 20(6):717-722[曾台衡, 刘国祥, 胡征宇. 长江中下游湖区浮游植物初级生产力估算. 长江流域资源与环境, 2011, 20(6):717-722]

    [28]

    Cai LL, Zhu GW, Li XY. Characteristic of phytoplankton primary productivity and influencing factors in littoral zone of Lake Taihu[J]. Acta Ecologica Sinica, 2013, 33(22):7250-7258[蔡琳琳, 朱广伟, 李向阳. 太湖湖岸带浮游植物初级生产力特征及影响因素.生态学报, 2013, 33(22):7250-7258]

    [29]

    Zhang YL, Feng S, Ma RH, et al. Spatial pattern of euphotic depth and estimation of phytoplankton primary production in Lake Taihu in autumn 2004[J]. Journal of Lake Science, 2008, 20(3):380-388[张运林, 冯胜, 马荣华, 等. 太湖秋季真光层深度空间分布及浮游植物初级生产力的估算. 湖泊科学, 2008, 20(3):380-388]

    [30]

    Yu JH, Zhong JC, Zhang YL, et al. Simulation of influence of dredging on sediment resuspention and nutrient loading in lake[J]. Journal of Lake Science, 2012, 24(1):34-42[余居华, 钟继承, 张银龙, 等. 湖泊底泥疏浚对沉积物再悬浮及营养盐负荷影响的模拟. 湖泊科学, 2012, 24(1):34-42]

    [31]

    Ogilvie BG, Mitchell SF. Does sediment resuspension have persistent effects on phytoplankton? Experimental studies in three shallow lakes[J]. Freshwater Biology, 1998, 40(1):51-63.

    [32]

    Amand AL ST, Soranno PA, Carpenter SR, et al. Algal nutrient deficiency:growth bioassays versus physiological indicators[J]. Lake and Reservoir Management, 1989, 5(1):27-35.

    [33]

    Sakamoto M, Hayashi H, Otsuki A, et al. Role of bottom sediments in sustaining plankton production in a Lake ecosystem-Experimental demonstration using enclosed water bodies in a Shallow Eutrophic Lake[J]. Ecological Research, 1989, 4(1):1-16.

    [34]

    Consalvey M, R G Perkins, D M Paterson. et al. Pam fluorescence:a beginners guide for benthic diatomists[J]. Diatom Research, 2005, 20(1):1-22

    [35]

    Hou XF, Guo PY, Zhang HX, et al. Effects of water suspended particular matter on the physiological and photosynthetic activity of Scenedesmusobliguus[J]. Acta Scientiae Cirumstantiae, 2013, 33(5):1446-1457[侯秀富, 郭沛涌, 张华想, 等. 水体悬浮颗粒物对斜生栅藻生理生化活及光合性的影响. 环境科学学报, 2013, 33(5):1446-1457]

    [36]

    Zhang YL, Qin BQ, Hu WP, et al. Temporal-spatial variations of euphotic depth of typical lake regions in Lake Taihu and its ecological environmental significance[J]. Science in China Series D, 2006, 49(4):431-442[张运林, 秦伯强, 胡维平, 等. 太湖典型湖区真光层深度的时空变化及其生态意义. 中国科学(D辑:地球科学), 2006, 49(4):287-296]

    [37]

    Zhang YL, Qin BQ, Chen WM, et al. A study on total suspended matter in Lake Taihu[J].Resource and Environment in the Yangtz Basin, 2004, 13(3):266-271[张运林, 秦伯强, 陈伟民, 等. 太湖水体中悬浮物研究. 长江流域资源与环境, 2004(3):266-271]

    [38]

    Zhang YL, Qin BQ, Chen WM, et al. Experimental study on underwater light intensity and primary productivity caused by variation of total suspended matter[J]. Advances in Water Science, 2004, 15(5):615-620[张运林, 秦伯强, 陈伟民, 等. 悬浮物浓度对水下光照和初级生产力的影响. 水科学进展, 2004, 15(5), 615-620]

    [39]

    Moore KA, Wetzel RL. Seasonal variations in eelgrass (Zostera marina L.) responses to nutrient enrichment and reduced light availability in experimental ecosystems[J]. Journal of Experimental Marine Biology and Ecology, 2000, 244(1):1-28

    [40]

    Dennison WC, Alberta RS. Photosynthetic Responses of Zostera marina L. (Eelgrass) to in situ Manipulations of Light Intensity[J]. Oecologia, 1882, 55:137-144.

    [41]

    Ni HG, Li XZ, Luo GY. Analysis of environmental effects of Nanjing Xuanwu Lake subaqueous highway tunnel[J]. Geological Journal of China Universities, 1998, 4(2):212-219[倪宏革, 李晓昭, 罗国煜. 南京玄武湖水底交通隧道工程与环境效应分析. 高校地质学报, 1998, 4(2):212-219]

    [42]

    Li SS, Lv JG, Gao X, et al. Influence of the East Lake channel project on Macrophytes in nearby waters[J]. Journal of Hydroecology, 2015, 36(2):18-24[李双双, 吕锦刚, 高翔, 等.东湖通道工程对沿线水域水生植物的影响. 水生态学杂志, 2015, 36(2):18-24]

    [43]

    Roozen, Frank C JM, Lurling, M, et al. Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes[J]. Freshwater Biology, 2007, 52(6):977-987.

  • 期刊类型引用(7)

    1. 李乐洲,孙广伟,张东升,王玉龙,杨耿介,芦宇婷,卢宏博,周玮. 养水机工作时长对参池氮磷营养盐及初级生产力的影响. 海洋科学. 2022(02): 105-112 . 百度学术
    2. 黄磊. 珞珈山三大湖泊浮游植物初级生产力的检测及其水质分析. 当代化工研究. 2021(10): 143-145 . 百度学术
    3. 郑淑娴,黄彬彬,戴明. 水体悬浮物增加对浮游植物种群增长的影响研究. 海洋湖沼通报. 2020(01): 143-150 . 百度学术
    4. 赵亚楠,徐宝军,彭雨婷. 城市黑臭水体治理技术研究现状和发展趋势. 沧州师范学院学报. 2020(02): 28-31 . 百度学术
    5. 姜霞,王书航,张晴波,王雯雯. 污染底泥环保疏浚工程的理念·应用条件·关键问题. 环境科学研究. 2017(10): 1497-1504 . 百度学术
    6. 祁闯,王国祥,吴馨婷,许晓光,韩睿明,吴松峻. 太湖湖滨带春季悬浮物沉降特征与水体营养盐响应. 环境科学. 2017(01): 95-103 . 百度学术
    7. 苟婷,马千里,王振兴,王丽,姚玲爱,许振成,赵学敏,梁荣昌,蓝郁. 龟石水库夏季富营养化状况与蓝藻水华暴发特征. 环境科学. 2017(10): 4141-4150 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  1321
  • HTML全文浏览量:  4
  • PDF下载量:  226
  • 被引次数: 11
出版历程
  • 收稿日期:  2015-08-02
  • 修回日期:  2016-01-10
  • 发布日期:  2016-05-24

目录

    /

    返回文章
    返回