EFFECTS OF CADMIUM ON IMMUNE RESPONSES of TWO C-TYPE LECTINS IN THE FRESHWATER CRAB SINOPOTAMON HENANENSE
-
摘要: C型凝集素是一类可以和糖类结合的蛋白质, 是先天性免疫系统中重要的模式识别受体。其中, 经典C型凝集素依赖Ca2+对糖类进行识别。Ca2+可作为细胞内第二信使, 参与多种信息传递。而重金属镉可导致细胞钙稳态失调, 干扰细胞内与Ca2+相关的信息传递。研究旨在探明镉胁迫对河南华溪蟹(Sinopotamon henanense) ShLec21和ShLec23两种C型凝集素免疫应答的影响。利用RACE方法, 克隆了ShLec21和ShLec23, 并进行了系统进化分析; 利用实时荧光定量PCR的方法, 研究了ShLec21和ShLec23的组织表达模式和镉联合嗜水气单胞菌(Aeromonas hydrophila)胁迫后肝胰腺和血淋巴中ShLec21和ShLec23表达模式。结果显示: ShLec21 cDNA全长863 bp, 编码152个氨基酸残基; ShLec23 cDNA全长681 bp, 编码164个氨基酸残基。ShLec21和ShLec23分别聚类为无脊椎动物的两个分支。ShLec21和ShLec23在血淋巴、鳃、肝胰腺、肠道、肌肉、卵巢和精巢中表达广泛, 但二者均主要在肝胰腺中表达。在胁迫条件下, 单独镉胁迫对肝胰腺和血淋巴中ShLec21和ShLec23表达量无显著影响; 在单独嗜水气单胞菌感染后, 肝胰腺中ShLec21和ShLec23表达量分别显著(P<0.05)与极显著(P<0.01)下调, 血淋巴中ShLec23表达量显著(P<0.05)下调; 而在镉胁迫后嗜水气单胞菌感染过程中,ShLec21和ShLec23表达量在肝胰腺和血淋巴中显著(P<0.05)或极显著(P<0.01)上调。研究结果表明, 河南华溪蟹ShLec21和ShLec23在响应嗜水气单胞菌感染过程中的表达, 在一定程度上能够被镉胁迫所上调。Abstract: C-type lectins are a type of proteins binding to carbohydrates and important pattern recognition receptors in the innate immune system. The classical C-type lectins recognize sugars in Ca2+-dependent manners. It is highly acknowledged that Ca2+ acts as a second messenger in the cell and participates in a variety of physiological and biochemical process. Heavy metal cadmium can lead to dysregulation of cellular calcium homeostasis and interfere with intracellular Ca2+-related information transmission. The aim of this study was to investigate the effects of cadmium stress on the immune responses of two types of lectins, ShLec21 and ShLec23, in the freshwater crab Sinopotamon henanense. The ShLec21 and ShLec23 cDNA were cloned by RACE method, and bioinformatic analysis was carried out. In addition to their constitutive expression in selected tissues, the stimulated expression of the two C-type lectins in hepatopancreas and hemolymph after the treatment of cadmium followed by Aeromonas hydrophila infection were detected. The results showed that ShLec21 cDNA was 863 bp in length that potentinally encoded 152 amino acid residues and ShLec23 cDNA was 681 bp in length that encoded 164 amino acid residues. ShLec21 and ShLec23 clustered into two branches of invertebrates. Both of ShLec21 and ShLec23 were widely expressed in hemolymph, gill, hepatopancreas, intestine, muscle, ovary and testis with highest level in hepatopancreas. Cadmium stress had no significant effect on the expression of ShLec21 and ShLec23 in hepatopancreas and hemolymph. Bacteria A. hydrophila infection significantly down-regulated the expression of ShLec21 (P<0.05) andShLec23 (P<0.01) in the hepatopancreas, and significantly (P<0.05) reduced the expression ofShLec23 in hemolymph. However, in the course of infection with A. hydrophila after cadmium stress, the expression levels of ShLec21 (P<0.05) andShLec23 (P<0.01) were significantly up-regulated in hepatopancreas and hemolymph. The results suggest that cadmium stress could upregulate the expression ofShLec21 and ShLec23 in response to A. hydrophila infection in a certain extent.
-
Keywords:
- Sinopotamon henanense /
- C-type lectin /
- Immune response /
- Cadmium /
- Aeromonas hydrophila
-
-
图 3 河南华溪蟹在不同浓度镉处理后再用嗜水气单胞菌感染肝胰腺和血淋巴中ShLec21和ShLec23 mRNA的表达模式
0、7.25和29 mg/L浓度镉分别处理7d后注射100 μL1/4LD50嗜水气单胞菌感染24h; a. 肝胰腺ShLec21 mRNA表达; b. 血淋巴ShLec21 mRNA表达; c. 肝胰腺ShLec23 mRNA表达; d. 血淋巴ShLec23 mRNA表达。*P<0.05, **P<0.01
Figure 3. Effects on ShLec21 and ShLec23 expression in hepatopancreas and hemolymph of S. henanense by different concentrations of cadmium subsequently infected by bacteria A. hydrophila
After treatment of different concentrations of cadmium (0, 7.25 and 29 mg/L) for 7d, 100 μL of1/4LD50 A. hydrophila was injected for 24h; a. ShLec21 mRNA expression in hepatopancreas; b. ShLec21 mRNA expression in the hemolymph; c. ShLec23 mRNA expression in the hepatopancreas; d. ShLec23 mRNA expression in the hemolymph; *P<0.05, **P<0.01
图 4 河南华溪蟹镉胁迫不同时间再嗜水气单胞菌感染后肝胰腺和血淋巴中ShLec21和ShLec23 mRNA表达模式
14.5 mg/L镉处理0、1d、4d和7d后, 注射100 μL1/4LD50嗜水气单胞菌12h, 对照组注射100 μL 0.85%生理盐水12h; a. 肝胰腺ShLec21 mRNA表达; b. 血淋巴ShLec21 mRNA表达; c. 肝胰腺ShLec23 mRNA表达; d. 血淋巴ShLec23 mRNA表达; *P<0.05,**P<0.01
Figure 4. Effects of ShLec21 and ShLec23 expression in hepatopancreas and hemolymph of S. henanense by different treatment times of cadmium subsequently infected by bacteria A. hydrophila
After treatment of 14.5 mg/L cadmium for 0, 1, 4, and 7 days, 100 μL of 1/4LD50 A. hydrophila was injected for 12h, and the control group was injected with 100 μL of 0.85% saline for 12h; a. ShLec21 mRNA level in hepatopancreas; b. ShLec21 mRNA level in the hemolymph; c. ShLec23 mRNA level in the hepatopancreas; d. ShLec23 mRNA level in the hemolymph. *P<0.05, **P<0.01
表 1 引物名称及序列
Table 1 Primers used in this study
引物
Primer引物序列
Primer sequence (5′—3′)用途
UsageShLec21-F1 GCTAAAGTGACTGGCGACCT 实时荧光定量PCR ShLec21-R1 TCTCCTCACTTCCTCCCTCG 实时荧光定量PCR ShLec23-F1 GCTGACGTGCTTGAGTACCT 实时荧光定量PCR ShLec23-R1 GCACGTTGTCACATCCATCG 实时荧光定量PCR ShLec21-5outer TTCTCCTCACTTCCTCCCTCGGG 5′RACE-PCR ShLec21-5inner AGAAGCATTTGTCCGTCAGCCCA 5′RACE-PCR ShLec21-3outer ATGAAGTGGGCCGCGACTCTTAC 3′RACE-PCR ShLec21-3inner TGGGCTGACGGACAAATGCTTCT 3′RACE-PCR ShLec23-5outer CACAACCACGCCCCTTCATGATT 5′RACE-PCR ShLec23-5inner CATGATTTAGGTCTGTGGCGCCG 5′RACE-PCR ShLec23-3outer ACCACCAGCACGAGACAAAGCAA 3′RACE-PCR ShLec23-3inner GTGGACGTAACTGTCACCGGCAC 3′RACE-PCR ShLec21-F2 TGTGGGAGTGTCAACAGCACAGA 全长验证 ShLec21-R2 ACACAATTTCGAGTCTCCGGGGT 全长验证 ShLec23-F2 AGCACGAGACAAAGCAAAATCAT 全长验证 ShLec23-R2 TGCTTTCACTCATAACATCATGCT 全长验证 -
[1] Sharon N, Lis H. History of lectins: from hemagglutinins to biological recognition molecules [J]. Glycobiology, 2004, 14(11): 53R
[2] Wang X W, Wang J X. Diversity and multiple functions of lectins in shrimp immunity [J]. Developmental & Comparative Immunology, 2013, 39(1-2): 27—38
[3] Wang X W, Wang J X. Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections [J]. Fish & Shellfish Immunology, 2013, 34(4): 981—989
[4] Weis W I, Taylor M E, Drickamer K. The C-type lectin superfamily in the immune system [J]. Immunological Reviews, 1998, 163(1): 19—34
[5] Chen D D, Meng X L, Xu J P, et al. PcLT, a novel C-type lectin from Procambarus clarkii, is involved in the innate defense against Vibrio alginolyticus and WSSV [J]. Developmental & Comparative Immunology, 2013, 39(3): 255—264
[6] Junkunlo K, Prachumwat A, Tangprasittipap A, et al. A novel lectin domain-containing protein (LvCTLD) associated with response of the whiteleg shrimp Penaeus (Litopenaeus) vannamei to yellow head virus (YHV) [J]. Developmental & Comparative Immunology, 2012, 37(3-4): 334—341
[7] Luo T, Yang H, Li F, et al. Purification, characterization and cDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimp Penaeus monodon [J]. Developmental & Comparative Immunology, 2006, 30(7): 607—617
[8] Costa F H, Valenca N S, Silva A R, et al. Cloning and molecular modeling of Litopenaeus vannamei (Penaeidae) C-type lectin homologs with mutated mannose binding domain-2 [J]. Genetics & Molecular Research, 2011, 10(2): 650—664
[9] Huang X, Li W, Jin M, et al. Single CRD containing lectin from Macrobrachium rosenbergii (MrLec) participates in innate immunity against pathogen infections [J]. Fish & Shellfish Immunology, 2016, 51: 282—290
[10] Jin X K, Li W W, Cheng L, et al. Two novel short C-type lectin from Chinese mitten crab, Eriocheir sinensis, are induced in response to LPS challenged [J]. Fish & Shellfish Immunology, 2012, 33(5): 1149—1158
[11] Fang Z Y, Li D, Li X J, et al. A single CRD C-type lectin from Eriocheir sinensis (EsLecB) with microbial-binding, antibacterial prophenoloxidase activation and hem-encapsulation activities [J]. Fish & Shellfish Immunology, 2016, 50: 175—190
[12] Kong H J, Park E M, Nam B H, et al. A C-type lectin like-domain (CTLD)-containing protein (PtLP) from the swimming crab Portunus trituberculatus [J]. Fish & Shellfish Immunology, 2008, 25(3): 311—314
[13] Guo X N, Jin X K, Li S, et al. A novel C-type lectin from Eriocheir sinensis functions as a pattern recognition receptor with antibacterial activity [J]. Fish & Shellfish Immunology, 2013, 35(5): 1554—1565
[14] Guo H Z, Zou P F, Fu J P, et al. Characterization of two C-type lectin-like domain (CTLD)-containing proteins from the cDNA library of Chinese mitten crab Eriocheir sinensis [J]. Fish & Shellfish Immunology, 2011, 30(2): 515—524
[15] 段利朋, 黄贝, 周立红, 等. 拟穴青蟹两种新C-型凝集素基因的克隆与表达分析. 水生生物学报, 2015, 39(2): 321—330 Duan L P, Huang B, Zhou L H, et al. Molecular cloning, characterization and expression of two novel lectins in mud crab, Scylla paramamosain [J]. Acta Hydrobiologica Sinica, 2015, 39(2): 321—330
[16] Kumar S R, Agrawal M, Marshall F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India [J]. Ecotoxicology & Environmental Safety, 2007, 66(2): 258—266
[17] Valko M, Izakovic M, Mazur M, et al. Role of oxygen radicals in DNA damage and cancer incidence [J]. Molecular and Cellular Biochemistry, 2004, 266(1/2): 37—56
[18] Zhan Q, Tang M. Research advances on apoptosis caused by quantum dots [J]. Biological Trace Element Research, 2014, 161(1): 3—12
[19] 侯宇华, 李娜, 李丹, 等. 镉对河南华溪蟹副性腺抗氧化酶活性及脂质、蛋白质和DNA的影响. 水生生物学报, 2015, 39(3): 621—626 Hou Y H, Li N, Li D, et al. Bioaccumulation of cadmium and its effects on antioxidant enzyme activities, lipid, protein and dna in male accessory gland of the freshwater crab Sinopotamon henanense [J]. Acta Hydrobiologica Sinica, 2015, 39(3): 621—626
[20] 杨健, 刘冬梅, 何永吉, 等. 镉对河南华溪蟹卵黄磷蛋白在卵巢中表达含量的影响及ELISA法的建立. 水生生物学报, 2015, 39(2): 287—293 Yang J, Liu D M, He Y J, et al. Established of elisa method of vitellin from freshwater crab Sinopotamon henanense and effect of cadmium on vitellin accumulation in ovary [J]. Acta Hydrobiologica Sinica, 2015, 39(2): 287—293
[21] 王茜, 郭鹄飞, 王兰. 镉对大型溞摄食能力和相关生理指标的影响. 水生生物学报, 2018, 42(3): 616—621 Wang Q, Guo H F, Wang L. Effect of cadmium on the feeding capacity and physiological status of Daphnia magna [J]. Acta Hydrobiologica Sinica, 2018, 42(3): 616—621
[22] Qin Q, Qin S, Wang L, et al. Immune responses and ultrastructural changes of hemocytes in freshwater crab Sinopotamon henanense exposed to elevated cadmium [J]. Aquatic Toxicology, 2012, (106–107): 140—146
[23] Lang L, Zhang Z, Jing W, et al. Identification of a novel toll gene (Shtoll3) from the freshwater crab Sinopotamon henanense and its expression pattern changes in response to cadmium followed by Aeromonas hydrophila infection [J]. Fish & Shellfish Immunology, 2017, 71: 177—190
[24] Li L, Zhao C P, Li H, et al. Establishment of the plasmid standard curve generation method for absolute quantification PCR [J]. Journal of Agricultural Biotechnology, 2011, 19(6): 1157—1162
[25] Lang X, Wang L, Zhang Z. Stability evaluation of reference genes for real-time PCR in zebrafish (Danio rerio) exposed to cadmium chloride and subsequently infected by bacteria Aeromonas hydrophila [J]. Aquatic Toxicology, 2016, 170: 240—250
[26] Robinson M J, Sancho D, Slack E C, et al. Myeloid C-type lectins in innate immunity [J]. Nature Immunology, 2006, 7(12): 1258—1265
[27] Runsaeng P, Thepnarong S, Rattanaporn O, et al. Cloning and the mRNA expression of a C-type lectin with one carbohydrate recognition domain from Fenneropenaeus merguiensis in response to pathogenic inoculation [J]. Molecular & Cellular Probes, 2015, 29(6): 365—375
[28] Ren Q, Li M, Du J, et al. Immune response of four dual-CRD C-type lectins to microbial challenges in giant freshwater prawn Macrobrachium rosenbergii [J]. Fish & Shellfish Immunology, 2012, 33(2): 155—167
[29] Zelensky A N, Gready J E. The C-type lectin-like domain superfamily [J]. FEBS Journal, 2005, 272(24): 6179—217
[30] Wang L, Wang L, Huang M, et al. The immune role of C-type lectins in molluscs [J]. Invertebrate Survival Journal, 2011, 8(2): 241—246
[31] Li M, Li C, Ma C, et al. Identification of a C-type lectin with antiviral and antibacterial activity from pacific white shrimp Litopenaeus vannamei [J]. Developmental & Comparative Immunology, 2014, 46(2): 231—240
[32] Liu Y C, Li F H, Dong B, et al. Molecular cloning, characterization and expression analysis of a putative C-type lectin (Fclectin) gene in Chinese shrimp Fenneropenaeus chinensis [J]. Molecular Immunology, 2007, 44(4): 598—607
[33] Huang Y, Huang X, Wang Z, et al. Function of two novel single-CRD containing C-type lectins in innate immunity from Eriocheir sinensis [J]. Fish & Shellfish Immunology, 2014, 37(2): 313—321
[34] Ma T H, Tiu S H, He J G, et al. Molecular cloning of a C-type lectin (LvLT) from the shrimp Litopenaeus vannamei: early gene down-regulation after WSSV infection [J]. Fish & Shellfish Immunology, 2007, 23(2): 430—437
-
期刊类型引用(38)
1. 范雨薇,胡发祥,富爱华,马万里,杨文超,王庆怡,李迪强,栾晓峰. 基于eDNA技术的毛里湖春季鱼类多样性及分布研究. 生态与农村环境学报. 2025(02): 225-233 . 百度学术
2. 程如丽,罗杨,张玉凤,李清华,王梦,张钰,李英文,沈彦君. 基于环境DNA技术的乌江干流梯级水电站库区的鱼类多样性. 水产学报. 2025(03): 140-157 . 百度学术
3. 徐薇,魏秘,曹俊,蔡露,高少波,朱迪. 耦合水文情势及鱼类繁殖的江垭水库生态调度需求研究. 水生态学杂志. 2024(01): 103-111 . 百度学术
4. 朱书礼,陈蔚涛,武智,夏雨果,杨计平,李跃飞,李捷. 基于环境DNA技术的珠江中下游鱼类多样性初步研究. 南方水产科学. 2024(01): 120-129 . 百度学术
5. 丁洋,李艳艳,赵进勇,彭文启,张晶,任锦豪. 基于环境DNA宏条形码的汉江上游黄金峡段鱼类多样性研究. 北京大学学报(自然科学版). 2024(01): 157-164 . 百度学术
6. 钟传艳,李钢,褚维乐,沈剑,封吉猛,龙晓文. 洱海鱼类多样性. 大理大学学报. 2024(06): 108-114 . 百度学术
7. 张添,隋宥珍,刘连为,孟玮,徐开达,邹锟,周永东. 基于环境DNA技术的舟山南部海域鱼类资源状况和多样性分析. 海洋开发与管理. 2024(03): 114-120 . 百度学术
8. 张浩博,王晓艳,陈治,钟兰萍,高天翔. 基于环境DNA metabarcoding的舟山及其邻近海域鱼类空间分布格局的初步研究. 水产学报. 2024(08): 125-138 . 百度学术
9. 张轶,周兴军,孙文静,岳彩英,白永泉,云婧. 利用环境DNA技术对内蒙古典型湖泊鱼类分布特征的研究. 生态毒理学报. 2024(04): 194-205 . 百度学术
10. 王江江,高晓田,赵春龙,于琪,赵欣,孙砚峰,吴成宾. 河北省土著鳜鱼种质资源鉴定. 河北渔业. 2024(09): 37-47 . 百度学术
11. 沈彦君,张玉凤,王梦,李英文. 长江上游珍稀特有鱼类国家级自然保护区重庆段水域浮游生物多样性及群落结构特征. 重庆师范大学学报(自然科学版). 2024(04): 94-109 . 百度学术
12. Hong CHEN,Wanchao HE,Fenge YANG,Li LIAO,Chengjie YIN,Yushun CHEN,Longgen GUO. Comparison of fish communities using environmental DNA metabarcoding and capture methods in a plateau Erhai Lake, China. Journal of Oceanology and Limnology. 2024(05): 1597-1608 . 必应学术
13. 李筱芹,吴开阳,倪达富,杨丽亚,鲁桃秀,张连博,邓华堂,吴彤飞,何荣超,付梅,姚维志,吕红健. 基于环境DNA技术的梯级水坝对长江上游重要支流鱼类多样性的影响研究——以綦江为例. 生态学报. 2024(19): 8865-8883 . 百度学术
14. 张家铭,周鑫鑫,王维,段聪,李英文,沈彦君. 环境DNA技术在长江江津段鱼类多样性监测中的应用研究. 西华师范大学学报(自然科学版). 2024(06): 579-586 . 百度学术
15. 党莹超 ,李莎 ,苏巍 ,胡凡旭 ,姜伟 . 基于环境DNA技术的宜宾江段秋季鱼类多样性研究. 水产科学. 2024(06): 894-905 . 百度学术
16. 张航,梁智策,匡晨亿,周婷,廖传松,苑晶,郭传波,刘家寿. 基于水声学和渔获物调查的洱海鱼类资源时空分布特征. 水生生物学报. 2024(12): 2029-2041 . 本站查看
17. 杨力凤,杨楠,付海滨,褚栋. 环境DNA技术在生物入侵研究中的应用进展. 植物保护学报. 2023(01): 1-10 . 百度学术
18. 雷姚,周春花,欧阳珊,吴小平. 不同环境样本类型对蚌类环境DNA监测的差异研究. 水生生物学报. 2023(03): 412-423 . 本站查看
19. 言柯程,李建超,田永军,刘纯琳,张玉磊,李志新,丁兆成. 基于环境DNA metabarcoding和底拖网调查的南黄海西部鱼类多样性比较. 中国海洋大学学报(自然科学版). 2023(05): 71-81 . 百度学术
20. 周春花,王蓉蓉,王生,郭婷,欧阳珊,吴小平. 基于环境DNA宏条形码技术的赣江下游(南昌段)鱼类多样性. 湖泊科学. 2023(04): 1423-1440 . 百度学术
21. 张彦彦,唐文乔,陈振锋,龚珑,唐振,张亚. 基于eDNA宏条形码技术的上海骨干河流鱼类多样性研究. 长江流域资源与环境. 2023(07): 1433-1446 . 百度学术
22. 何万朝,尹成杰,袁静,储昭升,张爱,过龙根. 生态廊道建设对洱海不同类型湖湾鱼类群落分布及多样性的影响. 水生生物学报. 2023(12): 1965-1975 . 本站查看
23. 赵金发,刘永,李纯厚,王腾,石娟,肖雅元,吴鹏,宋晓宇. 应用高通量测序技术研究永乐环礁和东岛鱼卵种类组成和分布. 热带海洋学报. 2023(06): 127-136 . 百度学术
24. 肖述文,刘兴国,陆诗敏,赵宇曦,顾兆俊,周润锋. 草鱼单养和混养池塘的水质与生物组成特征. 水生态学杂志. 2023(06): 79-87 . 百度学术
25. 董智玲,陈莎莎,吕宏森,张连博,姚维志,何文平. 基于环境DNA技术的长江上游重庆市江北段鱼类多样性研究. 生态毒理学报. 2023(06): 1-15 . 百度学术
26. 刘燕山,孙晶莹,朱明胜,李大命,唐晟凯,钟立强,张增,王超群,沈冬冬. 基于eDNA技术的太湖鱼类多样性调查. 生态毒理学报. 2023(06): 16-26 . 百度学术
27. 王梦,杨鑫,王维,段聪,刘智皓,陈启亮,李英文,沈彦君. 基于eDNA技术的长江上游珍稀特有鱼类国家级自然保护区重庆段鱼类多样性研究. 水生生物学报. 2022(01): 2-16 . 本站查看
28. 邢迎春,高婉茹,白洁,赵亚辉. 环境DNA在湖泊生物多样性研究中的应用. 水生生物学报. 2022(01): 137-148 . 本站查看
29. 徐欣靖,皮杰,李德亮,刘新华,向建国,余建波. 环境DNA技术在湖泊生物资源调查中的应用进展. 水产养殖. 2022(03): 1-7 . 百度学术
30. 李晓玲,刘洋,王丛丛,俞晔伟,李纲. 基于环境DNA技术的夏季东海鱼类物种多样性研究. 海洋学报. 2022(04): 74-84 . 百度学术
31. 沈梅,肖能文,卢林,罗遵兰,史娜娜,孙光. 环境DNA技术及在鱼类监测中的应用. 水生态学杂志. 2022(02): 133-141 . 百度学术
32. 王月,刘焕章,李莎,俞丹. 基于微滴式数字PCR方法的鱼类环境DNA样本处理与保存技术优化. 水生生物学报. 2022(03): 332-341 . 本站查看
33. 李玉龙,鲍相渤,李轶平,周遵春,付杰,高祥刚,陈百灵,李云峰. 基于环境DNA宏条形码技术的辽东湾典型围海养殖池塘内水母多样性研究. 生态学报. 2022(13): 5303-5313 . 百度学术
34. 沈梅,郭宁宁,罗遵兰,郭晓晨,孙光,肖能文. 基于eDNA metabarcoding探究北京市主要河流鱼类分布及影响因素. 生物多样性. 2022(07): 134-145 . 百度学术
35. 田翰,江艳娥,张俊,陈作志,徐姗楠,朱江峰,于文明. 西沙群岛冷泉区中层鱼类群落结构初探. 南方水产科学. 2022(05): 9-17 . 百度学术
36. 唐晟凯,刘燕山,王华,李大命,张彤晴,孙晶莹,许飞,王志浩. 环境DNA技术在邵伯湖鱼类资源监测中的应用. 水产科学. 2022(06): 1007-1016 . 百度学术
37. 唐晟凯,钱胜峰,沈冬冬,张彤晴,刘燕山,许飞,王华,李大命. 应用环境DNA技术对邵伯湖浮游动物物种检测的初步研究. 水产养殖. 2021(03): 13-20 . 百度学术
38. 刘波,王浩,秦斌,范仲儒,熊薇,陈义永. 基于环境DNA宏条形码技术的北京地区鱼类多样性调查和外来鱼种入侵风险评估. 生物安全学报. 2021(03): 220-229 . 百度学术
其他类型引用(26)